Skip to main content

Test of Density Functional Approximation for an Atom in a Strong Magnetic Field

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 6))

  • 223 Accesses

Abstract

The density functional formalism for the ground state of a Fermion fluid in a central potential is reviewed. Kohn and Sham’s procedure is replaced by an explicit evaluation of the kinetic energy density functional, which is carried out via a semiclassical approximation to the path integral representation of the appropriate Green’s function. This technique is generalized to an imposed uniform magnetic field, using a short time path integral approximation. The special case of an uncoupled harmonic atom in a magnetic field is solved exactly. Its energy and spatial extent are evaluated at low, medium, and high field strength, and compared with the density functional results. Several suggestions are made as to how the anisotrophy which is lost in the latter approach can be recovered.

Partial support by the European Research Office of the United States Army is thankfully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. J. K. Percus, in “Simple Models of Equilibrium and Nonequilibrium Phenomena,” ed. J. L. Lebowitz (North-Holland, 1987).

    Google Scholar 

  2. See e.g. E. R. Davidson, “Reduced Density Matrices in Quantum Chemistry”, (Academic Press, 1976).

    Google Scholar 

  3. J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 116 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J.K. Percus, Gordon Conference onLiquids (1963).

    Google Scholar 

  5. J. K. Percus, Int. J. Q. Chem. XIII, 89 (1978).

    Article  Google Scholar 

  6. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  7. See e.g. E. H. Lieb, Phys. Rev. Lett. 46, 457 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  8. D. C. Langreth and M. J. Mehl, Phys. Rev. B28, 1809 (1983).

    ADS  Google Scholar 

  9. E. K. U. Gross, L. N. Oliviera, and W. Kohn, Phys. Rev. A 37, 2805 (1988).

    ADS  Google Scholar 

  10. W. Yang, Phys. Rev. Lett. 59, 1569 (1987).

    Article  ADS  Google Scholar 

  11. C. Handler, J. Chem. Phys. 58, 1 (1973).

    Article  ADS  Google Scholar 

  12. R. A. Harris and L. R. Pratt, J. Chem. Phys. 82, 856 (1985).

    Article  ADS  Google Scholar 

  13. R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals,” (McGraw-Hill, 1965).

    Google Scholar 

  14. R. A. Harris and J. A. Cina, J. Chem. Phys. 79, 1381 (1983).

    Article  ADS  Google Scholar 

  15. S. Li and J. K. Percus, Phys. Rev. A 41, 2344 (1990).

    ADS  Google Scholar 

  16. See e.g. K. Huang, “Statistical Mechanics”, (Wiley, 1963).

    Google Scholar 

  17. See e.g. S. Li and J. K. Percus, J. Chem. Phys (1990); in press.

    Google Scholar 

  18. A. K. Dhara and S. K. Ghosh, Phys. Rev. A 41, 4653 (1990).

    ADS  Google Scholar 

  19. See e.g. J. K. Pecus, Annals N. Y. Acad. Sci. vol. 491, 36 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, S., Percus, J.K. (1991). Test of Density Functional Approximation for an Atom in a Strong Magnetic Field. In: Fantoni, S., Rosati, S. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3686-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3686-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6638-6

  • Online ISBN: 978-1-4615-3686-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics