Skip to main content

Molecular Beam Epitaxy of Semiconductor, Metal, and Dielectric Films

  • Chapter
Growth of Crystals

Part of the book series: Growth of Crystals ((GROC,volume 16))

  • 217 Accesses

Abstract

The most important achievement of molecular beam epitaxy (MBE) is the ability to prepare so-called modulated semiconducting structures (MSS), a special case of which are superlattices (SL) which consist of layers with a thickness of one or several monolayers of various materials. The first SL were prepared in the GaxAl1-xAs—GaAs system with a small misfit of the lattice constants f. A substantially broader dass of MSS and SL can be created by conjugation of crystals with a large f. In this case, defect-free strained SL are formed in which the adjoining layers are found in a pseudomorphic state. The basic principles and technical equipment of MBE are reviewed in [1–4]. In the present article, the physicochemical aspects of MBE as applied to growth of semiconducting, metal, and dielectric films are examined. Also, the effects of reflection intensity oscillation during reflection high-energy electron diffraction (RHEED), the methods of automatic ellipsometry (AE) and modulated beams which allow precision control of adsorption—desorption processes, superstructure rearrangements, kinetics of surface reactions, and mechanisms of MSS growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Y., Cho and J. R., Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem., 10, Pt. 3, 157–191 (1975).

    Article  Google Scholar 

  2. J. C., Bean, “Growth of doped silicon layers by molecular beam epitaxy,” in: Impurity Doping, North-Holland, Amsterdam (1981), pp. 177–215.

    Google Scholar 

  3. A. G., Denisov, N. A., Kuznetsov, and V. A., Makarenko, “Equipment for molecular beam epitaxy,” Obz. Élektron. Tekh., Ser 7, No.17 (828), 1–52 (1981).

    Google Scholar 

  4. V. V., Anashin, G. G., Emelin, B. Z., Kanter, V. P., Migal’, et al., Analytical Apparatus and Technological Equipment for Molecular Beam Epitaxy [in Russian], Preprint No. 1, Inst. Fiz. Khim., Novosibirsk (1985).

    Google Scholar 

  5. O. P., Pchelyakov, “High-energy electron diffraction applied to study of structure formation processes during molecular beam epitaxy,” in: Physics and Technical Basics of Molecular Beam Epilaxy, Eberswalde (DDR) (1979), p. 114–140.

    Google Scholar 

  6. J. J., Harris, B. A., Joyce, and P. J., Bodson, “Oscillations in the surface structure of Sn-doped GaAs during growth by MBE,” Surf. Sci., 103, L90–L96 (1981).

    Article  CAS  Google Scholar 

  7. J. H., Neave, B. A., Joyce, F. J., Dobson, and N. Norton, “Dynamics of film growth of GaAs by MBE from RHEED observation,” Appl. Phys. A, 31, No.1, 1–8 (1983).

    Article  Google Scholar 

  8. J. M., Van Hove, C. S., Lent, P. R., Pukite, and P. T., Cohen, “Damped oscillations in reflection high energy electron diffraction during GaAs MBE,” J. Vac. Sci. Technol B, 1, No.3, 741–746 (1983).

    Article  Google Scholar 

  9. J. M., Van Hove, P. R., Pukite, and P. I., Cohen, “RHEED oscillations as functions of MBE growth parameters,” MBE Conf., San Francisco (1984), pp. 18–40.

    Google Scholar 

  10. L. Esaki, “Computer-controlled molecular beam epitaxy,” Jpn. J. Appl Phys., 13, No.1, 821–828 (1974).

    Google Scholar 

  11. P. E,. Lusher, “Crystal growth by molecular beam epitaxy,” Solid State Technol., No.12, 43–52 (1977).

    Google Scholar 

  12. J. C., Bean and S. A., Sadowski, “Silicon MBE apparatus for uniform high-rate deposition on standard format wafers,” J. Vac. Sci. Technol., 20, No.2, 137–142 (1982).

    Article  CAS  Google Scholar 

  13. J. C., Bean, “Silicon molecular beam epitaxy as a VLST processing technique,” Int. Electron Devices Meeting (1981), pp. 6–13.

    Google Scholar 

  14. P. M., Petroff, A. C., Gossard, W., Wiegmann, and A., Savage, “Crystal growth kinetics in (GaAs)m-(AlAs)m superlattices deposited by molecular beam epitaxy,” J. Cryst Growth, 44, 5–13 (1978).

    Article  CAS  Google Scholar 

  15. W. J., Schaffer, M. D., Ling, S. P., Kowalczyk, and R. W., Grant, “Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction,” J. Vac. Sci. Technol B, 1, No.3, 688–695 (1983w).

    Article  CAS  Google Scholar 

  16. A. V., Arkhipenko, Yu. A., Biyumkina, M. A., Lamin, et al., “Apparatus for molecular beam epitaxy with automatic ellipsometry,” Poverkhnost, No.1, 93–96 (1985).

    Google Scholar 

  17. O. P., Pchelyakov, Yu. A., Blyumkina, S. I., Stenin, et al., “Study of structural rearrangements of an atomically clean silicon surface by automatic ellipsometry and reflection electron diffraction,” Poverkhnost, No.1, 147–149 (1982).

    Google Scholar 

  18. L. V., Sokolov, M. A., Lamin, V. A., Markov, et al., “Oscillations of optical properties of Ge film growth surface during molecular beam epitaxy,” Pisma Zh. Éksp. Teor. Fiz., 44, No.6, 278–280 (1986).

    CAS  Google Scholar 

  19. A. V., Rzhanov, S. I., Stenin, and B. Z., Ol’shanetskii, “Methods of monitoring surface state and problems of molecular beam epitaxy,” MikroélekJronika, 9, No.4, 292–301 (1980).

    CAS  Google Scholar 

  20. A. V., Rzhanov and S. I., Stenin, “Molecular epitaxy: state of the question, problem, and prospects of development,” in: Growth of Semiconducting Crystals anti Films [in Russian], Nauka, Novosibirsk (1984), Part 1, pp. 5–34.

    Google Scholar 

  21. S. I., Stenin, “Molecular beam epitaxy of semiconductor, dielectric, and metal films,” Vacuum, 36, No.7/8, 419–426 (1986).

    Article  CAS  Google Scholar 

  22. A. Y., Cho, “Growth of III-V semiconductor by molecular beam epitaxy and their properties,” Thin Solid Films, 100, No.4, 291–317 (1983).

    Article  CAS  Google Scholar 

  23. M., Tabe, K., Arai, and H. Nakamura, “Effect of growth temperature of Si MBE films,” Jpn. J. Appl Phys., 20, No.4, 703–708 (1981).

    Article  CAS  Google Scholar 

  24. N., Tabe, “Etching of SiO2 films by Si in ultrahigh vacuum,” Jpn. J. Appl. Phys., 21, No.3, 534–538 (1982).

    Article  CAS  Google Scholar 

  25. A. Munoz-Yaque, J. Piqueras, and N. Fabre, “Preparation of carbon-free GaAs surfaces: AES and RHEED analysis,” J. Electrochem. Soc., 128, No.1, 149–153 (1981).

    Article  Google Scholar 

  26. S. Wright and H. Kroemer, “Reduction of oxides on silicon by heating in a gallium molecular beam at 800°C,” Appl. Phys. Lett., 36, No.3, 210–211 (1980).

    Article  CAS  Google Scholar 

  27. A. V., Rzhanov, S. I., Stenin, O. P. Pchelyakov, and B. Z., Kanter, “Molecular beam epitaxial growth of germanium and silicon films: surface structure, film defects, and properties,” Thin Solid Films, 139, No.1, 169–175 (1986).

    Article  CAS  Google Scholar 

  28. Y. Ota, “Silicon molecular beam epitaxy,” Thin Solid Films, 106, No.1/2, 3–136 (1983).

    CAS  Google Scholar 

  29. B. J., Mrstik, “LEED and AES studies of the initial growth of GE epilayers on GaAs (100),” Surf. Sci., 124, 253–266 (1983).

    Article  CAS  Google Scholar 

  30. C.-A Chang, “Interface morphology of epitaxial growth of Ge on GaAs and GaAs on Ge by molecular beam epitaxy,” J. Appl. Phys., 53, No.2, 1253–1255 (1982).

    Article  CAS  Google Scholar 

  31. L. V., Sokolov, M. A., Lamin, O. P., Pchelyakov, et al., “Surface rearrangements during epitaxy of germanium on silicon,” Poverkhnost, No.9, 75–80 (1985).

    Google Scholar 

  32. A. I., Toropov, L. V., Sokolov, O. P., Pchelyakov, and S. I., Stenin, “Epitaxy of germanium from a molecular beam on a vicinal surface of silicon near (111),” Kristallografiya, 27, No.4, 751–756 (1982).

    Google Scholar 

  33. A. J., Noreika, M. H., Francombe, and C. E. C., Wood, “Growth of Sb and InSb by molecular beam epitaxy,” J. Appl. Phys., 52, No.12, 7416–7420 (1981).

    Article  CAS  Google Scholar 

  34. R. Z., Bachrach, “MBE-molecular beam epitaxial evaporative growth,” in: Crystal Growth, Pergamon, New York (1980), pp. 1–52.

    Google Scholar 

  35. C. T., Foxon, M. R., Boudry, and B. A., Joyce, “Evaluation of surface kinetic data by the transform analysis of modulated molecular beam measurement,” Surf. Sci., 44, No.1, 69–92 (1974).

    Article  CAS  Google Scholar 

  36. B. A., Joyce, “Present status and future directions for MBE,” Surf. Sci., 86, No.1, 92–101 (1979).

    Article  CAS  Google Scholar 

  37. B. A., Joyce, C. T., Foxon, and J. H., Neave, “Fundamentals of molecular beam epitaxy,” J. Jpn. Assoc. Crysl Growth, 5, 185–197 (1978).

    CAS  Google Scholar 

  38. C. T., Foxon, “MBE growth of GaAs and III-V alloys,” J. Vac. Sci. Technol B, 1, No.2, 293–297 (1983).

    Article  CAS  Google Scholar 

  39. J. H., Neave, P. K., Larsen, J. F., van der Veen, et al., “Effect of arsenic species (Asz or As4) on the crystallographic and electronic structure of MBE-grown GaAs (001) reconstructed surfaces,” Surf. Sci., 133,267–278 (1983).

    Article  CAS  Google Scholar 

  40. H. Kunzel, J. Knecht, H. Jung, et al., “The effect of arsenic vapor species on electrical and optical properties of GaAs grown by molecular beam epitaxy,” Appl Phys. A, 28, 167–173 (1982).

    Article  Google Scholar 

  41. T. Sakamoto, H. Funabashi, K. Ohta, et al., “Well-defined superlattice structures made by phase-locked epitaxy using RHEED intensity,” in: Proc. Int. Conf. Superlattice, Illinois (1984), pp. 1021–1029.

    Google Scholar 

  42. T. Sakamoto, H. Funabashi, K. Ohta, et al., “Phase-locked epitaxy using RHEED intensity oscillation,” Jpn. J. Appl Phys., 23, No.9, L657–L659 (1984).

    Article  Google Scholar 

  43. T. Kajima, N. J., Kawai, T. Nakagawa, et al., “Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxy system,” Appl Phys. Lett., 47, No.3, 286–288 (1985).

    Article  Google Scholar 

  44. A. I., Toropov, B. Z., Kanter, V. Yu., Karasev, et al., “Molecular epitaxy of germanium on silicon: surface morphology, structure, diffusion,” Poverkhnost, No.1, 110–115 (1982).

    Google Scholar 

  45. J. W., Matthews, D. S., Jackson, and A., Chambers, “Effect of coherency strain at misfit dislocations on the mode of growth of thin films,” Thin Solid Films, 26, No.1, 129–134 (1975).

    Article  CAS  Google Scholar 

  46. S. M., Pintus, S. I., Stenin, A. I., Toropov, and E. M., Trukhanov, “Morphological stability and mechanism of growth of heteroepitaxial films,” Inst. F. P., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1986).

    Google Scholar 

  47. E. Kasper and W. Pabst, “Profiling of SiGe superlattices by He backscattering,” Thin Solid Films, 37, No.1, L5–L7 (1976).

    Article  CAS  Google Scholar 

  48. S. I.. Stenin, “Problems of the formation of dislocation structure on heteroepitaxial layers,” Phys. Status Solidi A, 55, 519–527 (1979).

    Article  CAS  Google Scholar 

  49. S. I.. Stenin, “Processes of defect formation in epitaxial semiconductor films,” Thin Solid Films, 116, No.1, 99–110 (1984).

    Article  CAS  Google Scholar 

  50. S. I., Stenin and A. K., Gutakovskii, “Electron-microscopic studies of the mechanisms of formation of faults in heteroepitaxial systems,” in: Contemporary Electron Microscopy tor Study of Substances [in Russian], Nauka, Moscow (1982), pp. 139–147.

    Google Scholar 

  51. A. Y., Cho and P. D., Demier, “Single-crystal-aluminum Schottky-barrier diodes prepared by molecular beam epitaxy (MBE),” J Appl Phys., 49, No.6, 3328–3333 (1978).

    Article  CAS  Google Scholar 

  52. J. C., Bean and J. M., Poate, “Silicon/metal silicide heterostructures grown by molecular beam epitaxy,” Appl Phys. Lett., 37, No.7, 643–646 (1980).

    Article  CAS  Google Scholar 

  53. J. M., Gibson, J. C., Bean, J. M., Poate, and R. T., Tung, “Direct determination of atomic structure at the epitaxial cobalt disilicide on (111) Si interface by ultrahigh resolution electron microscopy,” Appl Phys. Lett., 49, No.9, 818–820 (1982).

    Article  Google Scholar 

  54. R. T., Tung, J. M., Gibson, and J. M., Poate, “Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures,” Phys. Rev. Lett., 50, No.6, 429–432 (1983).

    Article  CAS  Google Scholar 

  55. F. Comin, J. E., Rowe, and P. H., Citrin, “Structure and nucleation mechanism of nickel silicide on Si (111) derived from surface extended-X-ray-absorption fine structure,” Phys. Rev. Lett., 51, No.26, 2402–2405 (1983).

    Article  CAS  Google Scholar 

  56. R. T., Tung, “Schottky barrier heights of single crystal silicides on Si(111),” J Vac. Sci. Technol B, 2, No.3, 465–470 (1984).

    Article  CAS  Google Scholar 

  57. A. Y., Cho, “Recent developments in molecular beam epitaxy (MBE),” J Vac. Sci. Technol., 16, No.2, 275–284 (1979).

    Article  CAS  Google Scholar 

  58. S. Yoshida, “Reactive molecular beam epitaxy,” in: CRC Crit. Rev. Solid State Mater. Sci., 11, No.4, 287–316 (1983).

    Article  Google Scholar 

  59. C. W., Tu, T. T., Sheng, M. H., Read, et al., “Growth of single-crystalline epitaxial group II fluoride films on InP(001) by molecular beam epitaxy,” J Electrochem Soc., 130, No.10, 2081–2087 (1983).

    Article  CAS  Google Scholar 

  60. C. W., Tu, S. R., Forrest, and W. D., Johnson, Jr., “Epitaxial InP/fluoride/InP(100) double heterostructure grown by molecular beam epitaxy,” Appl Phys. Lett., 43, No.6, 569–571 (1983).

    Article  CAS  Google Scholar 

  61. J. M., Phillips, L. C., Feldman, J. M., Gibson, and M. L., McDonald, “Epitaxial growth of alkaline earth fluorides on semiconductors,” Thin Solid Films, 107, 217–226 (1983).

    Article  CAS  Google Scholar 

  62. J. M., Phillips and J. M., Gibson, “The growth and characterization of epitaxial fluoride films on semiconductors,” Mater. Res. Soc. Symp., 25, 381–391 (1984).

    Article  CAS  Google Scholar 

  63. S. L., Wright, M., Inada, and H., Kroemer, “Polar-on-nonpolar epitaxy: sublattice ordering in the nucleation and growth of GaP on Si(211),” Sci. Technol., 21, 534 (1982).

    CAS  Google Scholar 

  64. S. L., Wright, H., Kroemer, and M., Inada, “Molecular beam epitaxial growth of GaP on Si,” J Appl Phys., 55, No.8, 2916–2927 (1984).

    Article  CAS  Google Scholar 

  65. P. W., Sullivan, J. E., Bower, and G. M., Metre, “Growth of semiconductor/insulator structures-GaAs/fluoride/GaAs(001),” J Vac. Sci Technol., 3, No.2, 500–507 (1984).

    Google Scholar 

  66. T. Asano, H. Tsiwara, H. Lee, et al., “Formation of GaAs on insulation structures on Si substrates by heteroepitaxial growth of CaF2 and GaAs,” Jpn. J Appl. Phys., 25, No.2, L139–L141 (1986).

    Article  CAS  Google Scholar 

  67. S. Siskos, C. Fontaine, and A. Munoz-Vaque, “GaAs/(Ca, Sr)F2/(001)GaAs lattice-matched structures grown by molecular beam epitaxy,” Appl. Phys. Lett., 44, No.12, 1146–1148 (1984).

    Article  CAS  Google Scholar 

  68. H. Ogata, S. Maruno, Y. Morishita, and T. Isu, “MBE of InP using low energy p+ ion beam,” in: IVth Int. Conf. MBE, 7-10 Sept., Univ. of York (England), York (1986), G-10.

    Google Scholar 

  69. W. T. Tsang, “Chemical beam epitaxy of InP GaAs,” Appl Phys. Lett., 45, No.2, 1234–1236 (1984).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Stenin, S.I., Toropov, A.I. (1991). Molecular Beam Epitaxy of Semiconductor, Metal, and Dielectric Films. In: Bagdasarov, K.S., Lube, É.L. (eds) Growth of Crystals. Growth of Crystals, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3662-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3662-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-18116-0

  • Online ISBN: 978-1-4615-3662-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics