Skip to main content

Synthesis and Electrophysical Properties of Superionic Conductors Li3M2(PO4)3 (M = Fe, Sc, Cr)

  • Chapter
Growth of Crystals

Abstract

Compounds with high ionic conduction (solid electrolytes) attract the attention of investigators with respect to both scientific interest (the nature and mechanism of ionic transport) and the promise of practical use (storage batteries, fuel elements, sensitive gas detectors and analyzers, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V., Ilyukhin, A. A., Voronkov, and V. K., Trunov, “Crystal chemistry of mixed frameworks. Features of the M2T3O12 framework,” Koord. Khim., 7, No.11, 1603–1612 (1981).

    CAS  Google Scholar 

  2. R. G., Sizova, V. A., Blinov, A A., Voronkov, V. V., Ilyukhin, and N. V. Belov, “Refined Na4Zr2(SiO4)3 structure and its place in the series of mixed frameworks with general formula M2(TO4)3,” Kristallografiya, 26, No.2, 293–300 (1981).

    CAS  Google Scholar 

  3. H. Y.-P. Hong, “Crystal structures and crystal chemistry in the system Na1 + xZr2SixP3 - xO12,” Mater. Res. Bull, 11, No.1, 173–182 (1976).

    Article  CAS  Google Scholar 

  4. V. A., Efremov and V. B., Kalinin, “Determination of the crystal structure of Na3Sc2(PO4 3,” Kristallografiya, 23, No.4, 703–708 (1978).

    CAS  Google Scholar 

  5. B. I., Lazoryak, V. B., Kalinin, S. Yu. Stefanovich, and V. A., Efremov, “Crystal structure of Na3Sc2(P04)3 at 60°C,” Dold. Akad. Nauk SSSR, 250, No.4, 861–864 (1980).

    CAS  Google Scholar 

  6. M. Pintard-Screpel, F., d’Yvoire, and F. C., Remy, “Polymorphism and ionic constants of the phosphate Na3R2(PO4)3,” C. R Hebd. Seances Acad. Sci., Ser. C, 286, No.13, 381–383 (1978).

    CAS  Google Scholar 

  7. M. Pintard-Screpel, F., d’Yvoire, and F., Bretey, “Ionic conductivity, phase transitions and structure of 3D framework phosphates M3 IM2 III(PO4)3: MI = Li, Na, Ag; MIII = Cr, Fe,” Solid State Chem. Proc. Second Eur. Conf., R. Metselaar, H. J. M. Heijligers, and J. Schoonman (eds.), Studies in Inorganic Chemistry, Veidhoven, 7–9 June, 1982 (1983), Vol. 3, pp. 830–839.

    Google Scholar 

  8. F., d’Yvoire, M., Pintard-Screpel, F. Bretey, and M. de la Rochere, “Phase transitions and ionic conduction in 3D framework phosphates,” Solid State Ionics, 9, No.10, 851–858 (1983).

    Article  Google Scholar 

  9. C. Delmas, R. Olazcuaga, G. le Flem, et al., “Crystal chemistry of the Na1 + xZr2 - xLx(P04)3 (L = Cr, In, Yb) solid solution,” Mater. Res. Bull, 16, No.2, 285–290 (1981).

    Article  CAS  Google Scholar 

  10. E. A., Genkina, L. N., Dem’yanets, A., K. Ivanov-Shits, et al., “High ionic conduction in the compounds Li3Fe2(P04)3 and Li3Sc2(PO4)3,” Pis’ma Zh. Tekh. Fiz., 38, No.3, 257–259 (1983).

    CAS  Google Scholar 

  11. E. A., Genkina, L. A., Muradyan, and B. A., Maksimov, “Crystal structure of the monoclinic modification of Li3Sc2(PO4)3 at T = 293 K,” Kristallografiya, 31, No.3, 595–596 (1986).

    CAS  Google Scholar 

  12. I. A., Verin, E. A., Genkina, B. A., Maksimov, and L. A., Muradyan, “Crystal structure of the ionic conductor Li3Fe2(P04)3 at T = 593 K,” Kristallografiya, 30, No.4, 677–681 (1985).

    CAS  Google Scholar 

  13. I. P., Kondratyuk, M. I., Sirota, B. A., Maksimov, et al., “X-ray structural study of microtwinning of Li3Sc2(PO4)3 and Li3Fe2(PO4 3 J crystals,”Kristallografiya, 31, No.3, 488–494 (1986).

    CAS  Google Scholar 

  14. A. K., Ivanov-Shits, V. S., Borovkov, V. G., Fadeev, and V. A., Baskakov, “Apparatus for measurement of conductivity of solid electrolytes over a wide temperature range,” All-Union Institute of Scientific and Technical Information (VINITI), deposited paper No. 3002-77 (1977).

    Google Scholar 

  15. A. K., Jonsher, “Analysis of the alternating current properties of ionic conductors,” J Mater. Sci., No.13, 553–562 (1978).

    Google Scholar 

  16. D. P., Almond and A. R., West, “Comments on the analysis of a.c. conductivity data for single crystal Na-ß-alumina at low temperatures,” J Electroanal Chem, 193, No.1/2, 49–55 (1985).

    Article  CAS  Google Scholar 

  17. L. N., Dem’yanets, A. K., Ivanov-Shits, O. K., Mel’nikov, and A. P., Chirkin, “Anisotropy of electric conductivity and phase transition in single crystals of the superionic conductor Li3Sc2(PO4)3,” Fiz. Tverd. Tela, 27, No.6, 1913–1914 (1985).

    CAS  Google Scholar 

  18. A. K., Ivanov-Shits and S. E., Sigarev, “Ionic conduction in crystal structures with isolated tetrahedral ions,” Kristallografiya, 32, No.1 254–259 (1987).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Bykov, A.B. et al. (1991). Synthesis and Electrophysical Properties of Superionic Conductors Li3M2(PO4)3 (M = Fe, Sc, Cr). In: Bagdasarov, K.S., Lube, É.L. (eds) Growth of Crystals. Growth of Crystals, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3662-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3662-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-18116-0

  • Online ISBN: 978-1-4615-3662-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics