Skip to main content

Decomposition of a Solid Solution on the Surface of Lithium Niobate Crystals: Structure, Morphology, and Mutual Orientation of Phases

  • Chapter
Book cover Growth of Crystals

Part of the book series: Growth of Crystals ((GROC,volume 17))

Abstract

Lithium niobate is a colorless transparent crystal belonging to the trigonal system [1]. Congruent LiNbO3 crystals are grown from the melt by the Czochralski method. The composition of the most perfect of these, most frequently used in technology, is not stoichiometric relative to the molar concentrations of lithium and niobium. A lithium deficit in the amount of ~1.4 mole % occurs in them [2]. The chemical formula of the crystals is more accurately written as Li0.945NbO3 (deviation of the composition from stoichiometric in oxygen is unknown and is taken as zero). This peculiarity, as well as the dependence of the width of the region of homogeneity for the solid solutions based on lithium niobate as a function of temperature (Fig. 1), leads to identification of a second monoclinic phase LiNb3O8 upon cooling grown crystals below the limit of the monophasic region or during their heat treatment [3, 4]. Decomposition of supersaturated solid solutions is studied in detail for metallic alloys [5, 6] and much less for crystals of complicated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Yu. S. Kuz’minov, Lithium Niobate and Tantalate. Materials for Nonlinear Optics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  2. J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl Phys., 42, No. 5, 1846–1851 (1971).

    Article  CAS  Google Scholar 

  3. L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, “Solid-solution range of LiNb03,”J. CrysL Growth, 22, No. 3, 230–232 (1974).

    Article  CAS  Google Scholar 

  4. M. N. Armenise, C. Canali, M. de Sario, et al., “Characterization of TiO2 LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. AppL Phys., 54, No. 11, 6223–6231 (1983).

    Google Scholar 

  5. Ya. S. Umanskii, B. N. Finkel’shtein, and M. E. Blanter, Physical Principles of Metal Science [in Russian], Metallurgizdat, Moscow (1949).

    Google Scholar 

  6. B. Ya. Lyubov, Theory of Crystallization in Large Volumes [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  7. Z. G. Pinsker, Electron Diffraction [in Russian], Izd. Akad. Nauk SSSR, Moscow (1949).

    Google Scholar 

  8. V. A. Yakovlev, “Ellipsometric monitoring of the surface state of anisotropic crystals,” in: Optics of Anisotropic Media [in Russian], Mosk. Fiz. Tekh. Inst., Moscow (1985), pp. 27–28.

    Google Scholar 

  9. G. M. Zverev, S. A. Kolyadin, E. A. Levchuk, and L. A. Skvortsov, “Effect of the surface layer on the resistance of lithium niobate to laser radiation,” Kvantovaya Élektron. (Moscow), 4, No. 9, 1882–1889 (1977).

    CAS  Google Scholar 

  10. B. K. Vainshtein, Structural Electron Diffraction [in Russian], Izd. Akad. Nauk SSSR, Moscow (1956).

    Google Scholar 

  11. M. Lundberg, “The crystal structure of LiNb3O8,” Acta Chem Scand, 25, No. 9, 3337–3346 (1971).

    Article  CAS  Google Scholar 

  12. A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, et aL, Modern Crystallography: Crystal Formation, Vol. 3 [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  13. S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24°C,” J. Phys. Chem Solids, 27, No. 6/7, 997–1012 (1966).

    Article  CAS  Google Scholar 

  14. L. S. Palatnik and I. I. Papirov, Epitaxial Films [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  15. G. V. Chaplygin, “Mutual orientation during heteroepitaxy,” in: Abstracts of Papers of the Vlth IntL Conf. on Crystal Growth, VoL 1 [in Russian], Inst. Kristallogr. Akad. Nauk SSSR, Moscow (1980), pp. 135–136.

    Google Scholar 

  16. A. V. Kuznetsov, S. A. Semiletov, and G. V. Chaplygin, “Orientation of gallium nitride on sapphire,” in: Growth of Crystals, Vol. 15, A. A. Chernov, ed., Consultants Bureau, New York (1988), pp. 14–24.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Semiletov, S.A., Bocharova, N.G., Rakova, E.V. (1991). Decomposition of a Solid Solution on the Surface of Lithium Niobate Crystals: Structure, Morphology, and Mutual Orientation of Phases. In: Givargizov, E.I., Grinberg, S.A. (eds) Growth of Crystals. Growth of Crystals, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3660-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3660-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6629-4

  • Online ISBN: 978-1-4615-3660-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics