Skip to main content

Cellular Substructures in Single Crystalline Solid Solutions of Inorganic Fluorides Having the Fluorite Structure

  • Chapter

Part of the book series: Growth of Crystals ((GROC,volume 17))

Abstract

Instabilities in a smooth, for example planar, crystallization front at high crystallization rates can generate cellular structures (Fig. 1). These are typical dissipative structures [1–4]. Theoretical and practical aspects of cellular structure generation have been extensively investigated (for example, [5–25]). Cellular crystals are often unsuitable for such practical uses as optics because of their inhomogeneity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations , Wiley-Interscience, New York (1971).

    Google Scholar 

  2. G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, Wiley-Interscience, New York (1977).

    Google Scholar 

  3. H. Haken, Introduction to Synergetics. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology, Springer-Verlag, New York (1977).

    Google Scholar 

  4. A M. Askhabov, “Dissipative structures in crystallogenesis,” Preprint No. 88, Komi Branch, Academy of Sciences of the USSR, Syktyvkar (1982).

    Google Scholar 

  5. G. P. Ivantsov, “Diffusion supercooling in the crystallization of a binary alloy,” DokL Akad Nauk SSSR, 81, No. 2, 179–182 (1951).

    CAS  Google Scholar 

  6. J. W. Rutter and B. Chalmers, “A prismatic substructure formed during solidification of metals,” Can. J. Phys., 31, No. 1, 15–39 (1953).

    Article  CAS  Google Scholar 

  7. W. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The distribution of solute atoms during the solidification of metals,” Acta Metall, 1, No. 4, 428–437 (1953).

    Article  CAS  Google Scholar 

  8. D. T. J. Hurle, “Constitutional supercooling during crystal growth from stirred melts. I. Theoretical,” Solid State Electron., 3, No. 1, 37–44 (1961).

    Article  CAS  Google Scholar 

  9. W. W. Mullins and R. F. Sekerka, “Stability of a planar interface during solidification of a dilute binary alloy,” J. Appl Phys., 35, No. 2, 444–451 (1964).

    Article  Google Scholar 

  10. R. F. Sekerka, “A stability function for explicit evaluation of the Mullins-Sekerka interface stability criterion,” J. Appl Phys., 36, No. 1, 264–268 (1965).

    Article  Google Scholar 

  11. R. F. Sekerka, “Morphological stability,” J. Cryst Growth, 3/4, 71–81 (1968).

    Article  Google Scholar 

  12. D. E. Temkin, “Stability condition of a planar solid-liquid interface during binary alloy crystallization,” DokL Akad. Nauk SSSR, 133, No. 1, 174–177 (1960).

    CAS  Google Scholar 

  13. D. T. J. Hurle, “Interface stability during the solidification of stirred binary alloy melt,” J. Cryst Growth, 5, No. 3, 162–166 (1969).

    Article  Google Scholar 

  14. S. R. Coriell, D. T. J. Hurle, and R. F. Sekerka, “Interface stability during crystal growth: The effect of stirring,” J. Cryst Growth, 32, No. 1, 1–7 (1976).

    Article  CAS  Google Scholar 

  15. S. R. Coriell and R. F. Sekerka, “Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface,” J. Cryst Growth, 46, No. 4, 479–482 (1979).

    Article  CAS  Google Scholar 

  16. B. Caroli, C. Caroli, and B. Roulet, “On the emergence of one-dimensional front instabilities in directional solidification and fusion of binary mixtures,” J. Phys., 43, No. 12, 1767–1780 (1982).

    Article  CAS  Google Scholar 

  17. A. A. Chernov, “Stability of a planar growth front with anisotropic surface kinetics,” in: Reports of the Fourth Ail-Union Conf. on Growth of Crystals, ’Mechanics and Kinetics of Crystal Growth,’ Tsakhkadzor, Arm. SSR, Sept. 1972, Part 2 [in Russian], Izd. Akad. Nauk Arm. SSR, Erevan (1972), pp. 168–171.

    Google Scholar 

  18. B. Billia, H. Ahdout, and L. Capella, “Stable cellular growth of a binary alloy,” J. Cryst Growth, 51, No. 1, 81–84 (1981).

    Article  CAS  Google Scholar 

  19. A. Steinchen, B. Billia, A. Sanfeld, and L. Capella, “Criteres thermodynamiques de stabilite du front de solidification,” C. R Seances Acad Sci, Ser., 293, No. 12, 881–884 (1981).

    Google Scholar 

  20. G. V. Molev, V. E. Bozhevolnov, V. I. Korobov, and V. V. Karelin, “On the distribution of impurity Sc3+ in directed crystallization of fluorite from the melt,” J. Cryst Growth, 19, No. 2, 117–121 (1973).

    Article  CAS  Google Scholar 

  21. B. Joukoff, J. Primot, and C. Tallot, “Crystal growth and structural particularities of (BaF2)1-x(Y, LnF3)x solid solutions,” Mater. Res. Bull, 11, No. 10, 1201–1208 (1976).

    Article  CAS  Google Scholar 

  22. A. Z. Arakelyan, K. B. Seiranyan, P. P. Fedorov, and B. P. Sobolev, “Crystallization of nonstoichiometric fluorite phases in MF2-RF3 binary systems,” in: Abstracts of Reports of the Fifth Ail-Union Conf. on Growth of Crystals [in Russian], Tbilisi, 16-19 Sept., 1977, Tbilisi (1977), pp. 135–136, 330.

    Google Scholar 

  23. M. Hoppe, K. Recker, and D. Mateika, “Untersuchung der Kristallqualitata synthetischer CaF2(Ho) und Gd3Ga5012-Einkristalle mittels lichtoptischer Methoden,” Fortschr. Mineral, 58, No. 2, 248–269 (1980).

    Google Scholar 

  24. V. A. Meleshina, E. A Krivandina, E. V. Yakovenko, and B. P. Sobolev, “Variation of composition of Ca1-xHoxF2+x and La1-ySryF3-y crystals relative to development of cellular structure,” in: Abstracts of Papers of the Sixth All-Union Conf. on Growth of Crystals, “Growth of Crystals from the Melt,” Vol. 1 [in Russian], Tsakhkadzor, Arm. SSR, Sept. 1985, Izd. Akad. Nauk Arm. SSR, Erevan (1985), pp. 239–240.

    Google Scholar 

  25. V. A. Meleshina and V. A. Smiraova, “Relation of homogeneity of crystals of YAG:Nd, CaF2:HoF3, and LaF3:SrF2 to their internal morphology,” in: Abstracts of Papers of the Ninth All-Union Scientific-Technical Conf., “Local Electron Probe Studies and Their Application”[in Russian], Ustinov (1985), p. 321.

    Google Scholar 

  26. M. A. Ol’skaya, O. N. Postinikova, P. I. Fedorov, et al, “Phase diagram of the system TlCl-TlBr and TIBr-TlI studied by thermal analysis,” in: Tr. Gos. Issled. Red. Met., Vol. 29 [in Russian], Moscow (1970), pp. 3–9.

    Google Scholar 

  27. B. P. Sobolev, Z. I. Zhmurova, V. V. Karelin, et al, “Preparation of single crystals of nonstoichiometric fluorite phases M1-xRxF2+x by the Bridgman-Stockbarger method,” in: Growth of Crystals, Vol. 16, A. A. Chernov, ed., Consultants Bureau, New York (1990).

    Google Scholar 

  28. P. I. Fedorov and P. P. Fedorov, Principles of High-Purity Substance Technology [in Russian], Moscow Inst. Chem. Eng., Moscow Inst. Chem. Technol., Moscow (1982).

    Google Scholar 

  29. T. M. Turkina, P. P. Fedorov, and B. P. Sobolev, “Stability of a planar crystallization front during growth of single crystals of solid solutions M1-xRxF2+x(where M = Ca, Sr, Ba; R = rare earth element) from the melt,” Kristallografiya, 31, No. 1, 146–152 (1986).

    CAS  Google Scholar 

  30. P. P. Fedorov and T. M. Turkina, “Relationship of the phase diagram to the planar crystallization front stability during growth of single crystals of solid solutions from the melt,” in: Abstracts of Papers of the Sixth All-Union Conf. on Growth of Crystals, “Growth of Crystals from the Melt,” Vol. 1 [in Russian], Tsakhkadzor, Arm. SSR, Sept. 1985, Izd. Akad. Nauk Arm. SSR, Erevan (1985), pp. 45–46.

    Google Scholar 

  31. P. P. Fedorov, “Transitions between eutectic and peritectic phase diagrams of binary systems,” Zh. Neorg. Khim, 31, No. 3, 759–763 (1986).

    CAS  Google Scholar 

  32. D. D. Ikrami, S. V. Petrov, P. P. Fedorov, et al, “The systems MgF2-NiF2, CaF2-NiF2, and SrF2-NiF2,” Zh. Neorg. Khim., 29, No. 4, 1062–1065 (1984).

    CAS  Google Scholar 

  33. P. P. Fedorov, A. V. Rappo, F. M. Spiridonov, and B. P. Sobolev, “Phase diagram of the system NaF-YbF3,” Zh. Neorg. Khim., 28, No. 3, 744–748 (1983).

    CAS  Google Scholar 

  34. V. A. Gorbulev, P. P. Fedorov, and B. P. Sobolev, “Interaction of oxyfluorides of rare earth elements with fluorides of fluorite structure,” J. Less-Common Met, 76, No. 1/2, 55–62 (1980).

    Article  CAS  Google Scholar 

  35. I. D. Van der Waals and F. Konstamm, Thermostatics Course, Vol. 1 [Russian translation], O.N.T.I., Moscow (1936).

    Google Scholar 

  36. M. C. Flemings, Solidification Processing of Alloys, McGraw-Hill, New York (1973).

    Google Scholar 

  37. B. P. Sobolev and P. P. Fedorov, “Phase diagrams of the CaF2-(Y, Ln)F3 systems. I. Experimental,” J. Less-Common Met, 60, No. 1, 33–46 (1978).

    Article  CAS  Google Scholar 

  38. B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2-(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid-State Chem., 39, No. 2, 17–24 (1981).

    Google Scholar 

  39. B. P. Sobolev and N. L. Tkachenko,“ Thase diagrams of BaF2-(Y, Ln)F3 systems,” J. Less-Common Met, 85, No. 2,155–170 (1982).

    Article  CAS  Google Scholar 

  40. P. P. Fedorov and B. P. Sobolev, “Conditions for the formation of maxima on melting curves of solid solutions in salt systems,” Zh. Neorg. Khim., 24, No. 4, 1038–1040 (1979).

    CAS  Google Scholar 

  41. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect A: Cryst Phys., Diffr., Theor. Gen. Crystallogr., 32, No. 5, 751–767 (1976).

    Article  Google Scholar 

  42. B. F. Dzhurinskii and T. A. Bandurkin, “Periodicity of lanthanide properties and inorganic materials,” Izv. Akad. Nauk SSSR, Neorg Mater., 15, 1024–1027 (1979).

    CAS  Google Scholar 

  43. I. O. Kulik and G. E. Zil’berman, “Controlled crystallization of melts containing impurities. II,” Kristallografiya, 4, No. 6, 898–903 (1959).

    CAS  Google Scholar 

  44. G. Graziani, M. Strani, and R. Piva, “Effect of free surface radiation in axisymmetric thermocapillary flows,” Acta Astronaut, No. 4, 231–243 (1982).

    Article  Google Scholar 

  45. D. Schwabe and A. Scharmann, “Marangoni convection in open boat and crucible,” J. Cryst Growth, 52, No. 1, 435–449 (1981).

    Article  CAS  Google Scholar 

  46. V. A. Batyrev and N. S. Tsikunov, “Electron microprobe x-ray spectrometry analyzer for studying zonal distribution of elements,” Zavod. Lab., 48, No. 9, 51 (1982).

    CAS  Google Scholar 

  47. H. Linde and E. Schwarth, “Untersuchungen zur Charakteristik der freien Grenzflachenkonvektion beim Stoffubergang an Fluiden Granzen,” Z Phys. Chem., 224, No. 1/2, 331–352 (1963).

    Google Scholar 

  48. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).

    Google Scholar 

  49. M. I. Greisukh, “Impurity distribution coefficient at the crystal-melt interface as a function of crystallization rate,” Izv. Akad Nauk SSSR, Neorg Mater., 9, No. 2, 309–310 (1973).

    Google Scholar 

  50. A. Jackson, “Mechanism of growth,” in: Liquid Metals and Solidification, Am. Soc. for Metals, Cleveland (1958), pp. 174–186.

    Google Scholar 

  51. G. A. Alfintsev and D. E. Ovsienko, “Characteristics of growth from the melt of crystals of substances with various entropies of fusion,” in: Growth of Crystals, Vol. 13, A. A. Chernov, ed., Consultants Bureau, New York (1985).

    Google Scholar 

  52. A. A. Frolov, “Faceting of silicide and germanide crystals during growth from the melt,” in: Growth of Crystals, Vol. 17, A. A. Chernov, ed., Consultants Bureau, New York (1990).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Fedorov, P.P., Turkina, T.M., Meleshina, V.A., Sobolev, B.P. (1991). Cellular Substructures in Single Crystalline Solid Solutions of Inorganic Fluorides Having the Fluorite Structure. In: Givargizov, E.I., Grinberg, S.A. (eds) Growth of Crystals. Growth of Crystals, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3660-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3660-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6629-4

  • Online ISBN: 978-1-4615-3660-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics