Skip to main content

Introduction: Temperature And Timing In Developmental Biology

  • Chapter
Animal Species for Developmental Studies

Abstract

Strictly ordered development and precisely coordinated timing of the appearance of new structures and functions is characteristic of animal development, but the mechanisms underlying such orderliness remain unclear [43, 51]. Investigations of temporal patterns in development have been limited until recently by the fact that the duration of any developmental period is a variable depending on a species-specific rate of development and, in poikilothermic animals, also on external conditions (temperature in particular), as well as on species-specific limits of the range of optimal temperatures which correspond to those of spawning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Agrell, “The thermal dependence of the mitotic stages during the early development of the sea urchin,” Ark. Zool. 11, 382–392 (1958).

    Google Scholar 

  2. N. J. Berill, “Cell division and differentiation in asexual and sexual development,” J. Morphol. 57, 353–427 (1935).

    Article  Google Scholar 

  3. N. P. Bordzilovskaya and T. A. Dettlaff, “Table of stages of the normal development of axolotl embryos,” Axolotl Newsletter 7, 2–22 (1979).

    Google Scholar 

  4. G. ten Cate, Intrinsic Embryonic Development, North Holland Publ. Co., Amsterdam (1956).

    Google Scholar 

  5. E. V. Chulitskaya, “Relative duration of cleavage and gastrulation and latent differentiation of rudimentary labyrinth in Rana temporaria embryos at different temperatures,” Dokl. Akad. Nauk SSSR 160, 489–492 (1965).

    Google Scholar 

  6. J. Cooke, “The control of somite number during amphibian development: Models and experiment,” in Vertebrate Limb and Somite Morphogenesis, D. A. Ede et al., eds., Cambridge University Press (1977), pp. 443–448.

    Google Scholar 

  7. I. A. Dettlaff, “Mitotic dynamics of the first cleavage divisions in the eggs of sturgeons (at various temperatures) and of trout,” Exp. Cell Res. 29, 490–503 (1963).

    Article  Google Scholar 

  8. T. A. Dettlaff, “Cell divisions, duration of interkinetic states and differentiation in early stages of embryonic development,” Adv. Morphogen. 3, 323–363 (1964).

    Google Scholar 

  9. T. A. Dettlaff, “Determination of the duration of mitotic cycle during synchronous cleavage divisions,” in Methods in Developmental Biology, T.A. Dettlaff, V.Ya. Brodsky, and G.G. Gause, eds. [in Russian], Nauka, Moscow (1974), pp. 136–139.

    Google Scholar 

  10. T. A. Dettlaff, “Some temporal and thermal patterns of embryogenesis in poikilothermic animals,” in Problems of Experimental Biology [in Russian], Nauka, Moscow (1977), pp. 269–287.

    Google Scholar 

  11. T. A. Dettlaff, “Adaptation of poikilothermic animals to development under varying temperatures and problem of integrity of developing organism,” Ontogenez 12, 227–242 (1981).

    Google Scholar 

  12. T. A. Dettlaff, “The rate of development in poikilothermic animals calculated in absolute and relative time units,” J. Therm. Biol. 11, 1–7 (1986).

    Article  Google Scholar 

  13. T. A. Dettlaff, “Development of the mature egg organization in amphibians, fish, and starfish during the concluding stages of oogenesis, in the period of maturation,” in Oocyte Growth and Maturation, T. A. Detdaff and S. G. Vassetzky, eds., Consultants Bureau, New York (1988).

    Google Scholar 

  14. T. A. Dettlaff and A. A. Dettlaff, “On relative dimensionless characteristics of development duration in embryology,” Arch. Biol. 72, 1–16 (1961).

    CAS  Google Scholar 

  15. T. A. Dettlaff and A. A. Dettlaff, “Dimensionless criteria as a method of quantitative characterization of animal development,” in Mathematical Biology of Development, A. I. Zotin, ed. [in Russian], Nauka, Moscow (1982), pp. 25–39.

    Google Scholar 

  16. T. A. Dettlaff, A. S. Ginsburg, and O. I. Schmalhausen, Development of Acipenserid Fish. Maturation of Oocytes, Fertilization, Development of Embryos and Prelarvae [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  17. T. A. Dettlaff and T. B. Rudneva, “Dimensionless characteristics of the duration of embryonic development of the spur-toed frog,” Sov. J. Dev. Biol. 4, 423–432 (1973).

    Google Scholar 

  18. T. A. Dettlaff, S. G. Vassetzky, and S. I. Davydova, “Maturation of sturgeon oocytes under different temperatures and time of obtaining eggs after the hypophysial injection,” in 6th Congrès Intern. Reprod. Amm. Insem. Artif. Paris I(1968), pp. 129–131.

    Google Scholar 

  19. M. A. DiBerardino, “Frogs,” in Methods in Developmental Biology, F. H. Wilt and N. K. Wessels, eds.., T. Y. Crowell Co., New York (1967), pp. 53–74.

    Google Scholar 

  20. E. Y. DuPraw, “The honeybee embryo,” in Methods in Developmental Biology, F. H. Wilt and N. K. Wessels, eds.., T. Y. Crowell Co., New York (1967), pp. 183–217.

    Google Scholar 

  21. G. P. Eremeyev, “On synchronism in avian embryogenesis,” Arkh. Anat., Gistol. Embriol. 37, 67–70 (1959).

    Google Scholar 

  22. H. J. Fry, “Studies on the mitotic figure. V. The schedule of mitotic changes in developing Arbacia eggs,” Biol. Bull. 70, 89–99 (1936).

    Article  Google Scholar 

  23. L. Gallien and O. Bidaud, “Table chronologique du développement chez Triturus helveticus,” Bull. Soc. Zool. Fr. 84, 22–32 (1959).

    Google Scholar 

  24. L. Gallien and M. Durocher, “Table chronologique du développement chez Pleurodeles waltlii Michah,” Bull. Biol. Fr. Belg. 91, 97–114 (1957).

    Google Scholar 

  25. A. S. Ginsburg, “Fertilization in Acipenserid fish. 1. The fusion of gametes,” Tsitologiya 1, 510–526 (1959).

    Google Scholar 

  26. G. M. Ignatieva, “Regularities of early embryogenesis in teleosts as revealed by studies of the temporal pattern of development. 1. The duration of the mitotic cycle and its phases during synchronous cleavage divisions,” Wilhelm Roux’s Arch. Dev. Biol. 179, 301–312 (1976).

    Article  Google Scholar 

  27. G. M. Ignatieva, “Regularities of early embryogenesis in teleosts as revealed by studies of the temporal pattern of development. 2. Relative duration of corresponding periods of development in different species,” Wilhelm Roux’s Arch. Dev. Biol. 179, 313–325 (1976).

    Article  Google Scholar 

  28. G. M. Ignatieva, Early Embryogenesis of Fish and Amphibians [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  29. G. M. Ignatieva and A. A. Kostomarova, “Duration of mitotic cycle during synchronous cleavage divisions (τO) and its dependence on temperature in loach embryos,” Dokl. Akad. Nauk SSSR 168, 221–224 (1966).

    Google Scholar 

  30. E. V. Igumnova, “Chronological patterns of embryonic development of the beluga,” Sov. J. Dev. Biol. 6, 38–43 (1975).

    Google Scholar 

  31. A. A. Kostomarova and G. M. Ignatieva, “Ratio of the processes of karyoand cytotomy during the period of synchronous cleavage divisions in the loach (Misgurnus fossilis L.), Dokl. Akad. Nauk SSSR 183, 490–493 (1968).

    PubMed  CAS  Google Scholar 

  32. A. L. Mazin, V. N. Vitvitzky, and V. Ya, Aleksandrov, “Temperature dependence of oocyte cleavage in three thermophilically different frogs of the genus Rana,” J. Therm. Biol. 4, 57–61 (1979).

    Article  Google Scholar 

  33. J. A. Moore, “Temperature tolerance and rates of development in the eggs of Amphibia,” Ecology 20, 459–478 (1939).

    Article  Google Scholar 

  34. A. Murakami, “Comparison of radiosensitivity among different silkworm strains with respect to the killing effect on the embryos,” Mutat. Res. 8, 343–352 (1969).

    Article  PubMed  CAS  Google Scholar 

  35. P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin), North Holland Publ Co., Amsterdam (1956).

    Google Scholar 

  36. L. du Nouy, Biological Time, Methuen, London (1936).

    Google Scholar 

  37. V. P. Ostryakova-Varshaver, “Cytology of fertilization in the mulberry silkworm with reference to the differences in the sensitivity of successive phases of the process to high temperature,” Dokl. Akad. Nauk SSSR 83, 921–924 (1952).

    Google Scholar 

  38. V. P. Ostryakova-Varshaver, “Effect of high temperature in embryogenesis of the mulberry silkworm (Bombyx mori L.),” in Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR 21, 81–103 (1958).

    Google Scholar 

  39. N. N. Rott, “Correlation between karyo-and cytokinesis during the first cell divisions in the axolotl (Ambystoma mexicanum Cope),” Sov. J. Dev. Biol. 4, 175–177 (1973).

    Google Scholar 

  40. T. B. Rudneva, “Duration of karyomitosis and cell division in cleavage divisions II-IV in the clawed frog, Xenopus laevis,” Sov. J. Dev. Biol. 3, 526–530 (1972).

    PubMed  CAS  Google Scholar 

  41. D. A. Sabinin, Developmental Physiology of Plants [in Russian], Izd. Akad. Nauk SSSR, Moscow (1936).

    Google Scholar 

  42. N. Satoh, “On the’ clock’ mechanism determining the time of tissue-specific enzyme developing during ascidian embryogenesis,” J. Embryol. Exp. Morphol. 54, 131–139 (1979).

    PubMed  CAS  Google Scholar 

  43. N. Satoh, “Timing mechanism in early embryonic development,” Differentiation 22, 156–163 (1982).

    Article  PubMed  CAS  Google Scholar 

  44. N. Satoh and S. Ikegami, “A definite number of aphidicolin-sensitive cell cycle events are required for acetylcholinesterase development in the presumptive muscle cells of ascidian embryos,” J. Embryol. Exp. Morphol. 61, 1–13 (1981).

    PubMed  CAS  Google Scholar 

  45. N. Satoh and S. Ikegami, “On the’ clock’ mechanism determining the time of tissue-specific enzyme development during ascidian embryogenesis. 2. Evidence for association of the’ clock’ with the cycle of DNA replication,” J. Embryol. Exp. Morphol. 64, 61–71 (1981).

    PubMed  CAS  Google Scholar 

  46. I.I. Schmalhausen, Factors of Evolution: The Theory of Stabilizing Selection, Blackiston Co., New York (1949).

    Google Scholar 

  47. M.Schnetter, “Morphologische Untersuchungen über das Differenzierungszentrum in der Embryonalentwicklung der Honigbiene,” Z. Morphol. Oekol. Tiere 29, 114 (1935) (cited in [16]).

    Article  Google Scholar 

  48. G. G. Selman, “Determination of the first two cleavage furrows in developing eggs of Triturus alpestris compared with other forms,” Dev., Growth Differ. 24, 1–6 (1982).

    Article  Google Scholar 

  49. M. N. Skoblina, “Characteristics of duration of main stages of embryogenesis in Ambystoma mexicanum,” in 4th Embryological Conference. Abstracts [in Russian], Leningrad Univ. Press (1963), pp. 172–173.

    Google Scholar 

  50. M. N. Skoblina, “Dimensionless characteristics of duration of mitotic phases during synchronous cleavage divisions in the axolotl,” Dokl Akad. Nauk SSSR 160, 700–703 (1965).

    PubMed  CAS  Google Scholar 

  51. M. H. L. Snow and P. P. Tarn, “Timing in embryological development,” Nature (London) 286, 107 (1980).

    Article  CAS  Google Scholar 

  52. P. Valouch, J. Melichna, and F. Slàdecek, “The number of cells at the beginning of gastrulation depending on the temperature in different species of amphibians,” Acta Univ. Carol, Biol. 195–205 (1971).

    Google Scholar 

  53. S. G. Vassetzky, “Fish of the family Polyodontidae,” Vopr. Ikhtiol. 11, 26–42(1971).

    Google Scholar 

  54. S. G. Vassetzky, “Meiotic divisions,” in Oocyte Growth and Maturation, T. A. Dettlaff and S. G. Vassetzky, eds., Consultants Bureau, New York (1988).

    Google Scholar 

  55. T. A. Dettlaff, G. M. Ignatieva, and S. G. Vassetsky, “The problem of time in developmental biology: its study by the use of relative characteristics of development duration,” in Sov. Sci. Rev. I Physiol. Gen. Biol. 1, Part A, 1–88 (1987).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Dettlaff, T.A. (1991). Introduction: Temperature And Timing In Developmental Biology. In: Dettlaff, T.A., Vassetzky, S.G. (eds) Animal Species for Developmental Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3654-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3654-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-11032-0

  • Online ISBN: 978-1-4615-3654-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics