Skip to main content

Abstract

Computer vision is the study of theories and algorithms involving the sensing and transmission of images; preprocessing of digital images for noise removal, smoothing, or sharpening of contrast; segmentation of images to isolate objects and regions; description and recognition of the segmented regions; and finally interpretation of the scene. We normally think of images in the visible spectrum, either monochrome or color, but in fact, images can be produced by a wide range of sensing modalities including X-rays, neutrons, ultrasound, pressure sensing, laser range finding, infrared, and ultraviolet, to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Prewitt, “Object enhancement and extraction”, inPicture Processing and PsychopictoricsB.S. Lipkin and A. Rosenfield (Eds.), Academic Press, New York, 1970, pp. 75–149.

    Google Scholar 

  2. S.K. Pal, and RA. King. “Image enhancement using smoothing with fuzzy sets,”IEEE Transactions on System. Man and CyberneticsVol. SMC-11, 1981, pp. 494–501.

    Google Scholar 

  3. S.K. Pal, and RA. King. “Histogram equalization withSand x functions in detecting x-ray edges”Electronics LettersVol. 17, 1981, pp. 302–304.

    Article  Google Scholar 

  4. S.K. Pal, and R.A. King. “On edge detection of x-ray images using fuzzy sets,”IEEE Transactions on Pattern Analysis and Machine IntelligenceVol. PAMI5, 1983, pp. 69–77.

    Article  Google Scholar 

  5. J. Keller, H. Qiu, and H. Tahani, “The fuzzy integral in image segmentation,”Proceedings. NAFIPS-86New Orleans, June 1986, pp. 324–338.

    Google Scholar 

  6. R. Sankar, “Improvements in image enhancement using fuzzy sets”Proceedings NAFIPS-86New Orleans, June 2–4, 1986, pp. 502–515.

    Google Scholar 

  7. LA. Zadeh, “Calculus of fuzzy restrictions”in Fuzzy Sets and Their Applications to Cognitive and Decision ProcessesL. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, Eds., Academic Press, London, 1975, pp. 1–26.

    Google Scholar 

  8. Y. Nakagowa, and A. Rosenfeld, “A note on the use of local min and max operators in digital picture processing,”IEEE Transactions on System. Man and CyberneticsVol. SMC-8, 1978, pp. 632–635.

    Google Scholar 

  9. M.M. Gupta, G.K. Knopf, and P.N. Mikiforuk, “Edge Perception Using Fuzzy Logic”in Fuzzy Computing: Theory Hardware and ApplicationsNorth Holland, 1988.

    Google Scholar 

  10. Huntsberger, and M. Desclazi, “Color edge detection”Pattern Recognition Letters3, 1985, 205.

    Article  Google Scholar 

  11. S.K. Pal and A. Rosenfeld, “Image enhances and thresholding by optimization of fuzzy compactness”Pattern Recognition Lettersvol. 7, 1988, pp. 77–86.

    Article  MATH  Google Scholar 

  12. R. Krishnapuram and J. Lee, “Fuzzy-Compensative-Connective-Based Hier-archical Networks and their Application to Computer Vision” under review.

    Google Scholar 

  13. Lee, “Fuzzy-Set-Theory-Based Aggregation Networks for Information Fusion and Decision Making”, Ph.D. Thesis, University of Missouri - Columbia.

    Google Scholar 

  14. Tahani, “The generalized fuzzy integral in computer vision,” Ph.D. dissertation, University of Missouri - Columbia, 1990.

    Google Scholar 

  15. J.C. Dunn, A fuzzy relative of the Isodata process and its use in detecting compact well-separated clustersJournal Cybemet31(3), 1974, pp. 32–57.

    MathSciNet  Google Scholar 

  16. C. BezdekPattern Recognition with Fuzzy Objective Function AlgorithmsPlenum Press, New York, 1981.

    Book  MATH  Google Scholar 

  17. T. Huntsberger, C. Jacobs, and R. Cannon, “Iterative fuzzy image segmentation,”Pattern Recognitionvol. 18, 1985, pp. 131–138.

    Article  Google Scholar 

  18. R. Cannon, J. Dave and J. Bezdek, “Efficient implementation of the fuzzy c-means clustering algorithm,”IEEE Transactions on Pattern Analysis Machine IntelligenceVol. 8, No. 2, 1986, pp. 248–255.

    Article  MATH  Google Scholar 

  19. S. Horowitz and T. Pavlidis, “Picture segmentations by a directed split and merge procedure”Proceedings of the Second International Journal Conference Pattern Recognition1974, pp. 424–433.

    Google Scholar 

  20. T. Huntsberger., “Representation of uncertainty in low level vision”IEEE Transactions on ComputersVol. 235, No. 2, 145, 1986, p. 145.

    Article  Google Scholar 

  21. R. Cannon, J. Dave, J.C. Bezdek, and M. Trivedi, “Segmentation of a thematic mapper image using the fuzzy c-means clustering algorithm,”IEEE Transactions on Geographical Science and Remote SensingVol. 24, No. 3, 1986, pp. 400–408.

    Article  Google Scholar 

  22. J. Keller and C. Carpenter, “Image Segmentation in the Presence of Uncertainty,”International Journal of Intelligent Systemsvol. 5, 1990, pp. 193–208.

    Article  MATH  Google Scholar 

  23. A. Rosenfeld, Fuzzy digitaltopology Information and Control40, 1979, pp. 76–87.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Rosenfeld, “On connectivity properties of gray scale pictures”Pattern Recognition16, 1983, pp. 47–50.

    Article  Google Scholar 

  25. A. Rosenfeld, “The fuzzy geometry of image subsets”Pattern Recognition Letters2, 1984, pp. 311–317.

    Article  Google Scholar 

  26. D. Dubois and M.C. Jaulent, “Shape understanding via fuzzy models”2nd IFAC/IFIP/IFORS/IEA Conference on analysis. design and evaluation of man-machine systems1985, pp. 302–307.

    Google Scholar 

  27. D. Dubois and M.C. Jaulent, “A general approach to parameter evaluations in fuzzy digital pictures”Pattern Recognition Lettersto appear.

    Google Scholar 

  28. S. Peleg and A. Rosenfeld, A mini-max medial axis transformationIEEE Transactions on Pattern Analysis and Machine IntelligenceVol. PAMI-3, 1981, pp. 208–210.

    Article  Google Scholar 

  29. C.R. Dyer and A. Rosenfeld, “Thinning operations on grayscale pictures,”IEEE Transactions on Pattern Analysis and Machine IntelligenceVol. PAMI1, 1979, pp. 88–89.

    Google Scholar 

  30. A. Rosenfeld and A.C. KakDigital Picture ProcessingVol. 2, Academic Press, N.Y., 1982.

    Google Scholar 

  31. L. Liao, “Image segmentation and enhancement by optimizing geometric parameters”, M.S. Thesis, University of Missouri-Columbia, 1990.

    Google Scholar 

  32. I. Gath and A.B. Geva, “Unsupervised Optimal Fuzzy Clustering”IEEE Transactions on Pattern Analysis Mac ineligencevol. PAMI-11, no. 7, pp. 773–781, July 1989.

    Google Scholar 

  33. J. Keller and Y. Seo, “Local fractal geometric features for image segmentation”, to appearInternational Journal of Imaging Systems and Technology1990.

    Google Scholar 

  34. R. Krishnapuram and A. Munshi, “Cluster-Based Segmentation of Range Images Using Differential-Geometric Features”, submitted to under review.

    Google Scholar 

  35. R. Krishnapuram and J. Lee “Fuzzy-Connective-Based Hierarchical Aggregation Networks for Decision Making”Fuzzy Sets and Systemsto appear.

    Google Scholar 

  36. R. Krishnapuram and J. Lee “Determining the Structure of Uncertainty Management Networks”, to appear in theProceedings of the SPIE Conference on Robotics and Computer VisionPhiladelphia, November 1989.

    Google Scholar 

  37. H. Qiu and J. Keller, “Multispectral segmentation using fuzzy techniques,”Proceedings NAFIPS-87Purdue University, May 1987, pp. 374–387.

    Google Scholar 

  38. H. Tahani and J. Keller, “Information fusion in computer vision using the fuzzy integral”IEEE Transactions on System. Man and Cyberneticsvol. 20, no. 3, 1990, pp. 733–741.

    Article  Google Scholar 

  39. H.J. Zimmermann and P. Zysno “Decisions and evaluations by hierarchical aggregation of information”Fuzzy Sets and Systemsvol.10, no.3, 1983 pp. 243–260.

    Article  MATH  Google Scholar 

  40. Y. OhtaKnowledge-Based Interpretation of Outdoor National ScenesPitman Advanced Publishing, Boston, 1985.

    Google Scholar 

  41. R. Dave, “Use of the adaptive fuzzy clustering algorithm to detect lines in digital images”Proceedings of the Intelligent Robots and Computer Vision VIIIvol. 1192, no. 2, 1989, pp. 600–611.

    Google Scholar 

  42. C.-P. Freg, “Algorithms to detect linear and planar clusters and their applications”, MS Project Report, University of Missouri-Columbia, May 1990.

    Google Scholar 

  43. J. Bezdek, C. Cordy, R. Gunderson and J. Watson, “Detection and characterization of cluster substructure”SIAM Journal Applied MathematicsVol. 40, 1981, pp. 339–372.

    Article  MATH  Google Scholar 

  44. M. Windham, “Geometrical fuzzy clustering algorithms”Fuzzy Sets and Systemsvol. 10, 1983, pp. 271–279.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Dave, “Fuzzy Shell-Clustering and applications to circle detection in digital images”International Journal of General Systems1990.

    Google Scholar 

  46. M. Sugeno, “Fuzzy measures and fuzzy integrals: A survey”in Fuzzy Automatic and Decision ProcessesNorth Holland, Amsterdam, 1977, pp. 89–102.

    Google Scholar 

  47. J. Wootton, J. Keller, C. Carpenter, and G. Hobson, “A multiple hypothesis rule-based automatic target recognizes”, inPattem RecognitionLecture Notes in Computer Science, Vol. 301, J. Kittler (ed.), Springer-Verlag, 1988, pp. 315–324.

    Chapter  Google Scholar 

  48. G. ShaferA Mathematical Theory of EvidencePrinceton University Press, Princeton, 1976.

    MATH  Google Scholar 

  49. J. Keller, G. Hobson, J. Wootton, A. Nafarieh, and K. Luetkemeyer, “Fuzzy confidence measures in midlevel vision,”IEEE Transactions on System Man and CyberneticsVol. SMC-17, No. 4, 1987, pp. 676–683.

    Article  Google Scholar 

  50. J. Keller and D. Jeffreys, “Linguistic computations in computer vision”Proceedings NAFIPS-90Vol. 2, Toronto, 1990, pp. 432–435.

    Google Scholar 

  51. J. Keller, H. Shah, and F. Wong, “Fuzzy Computations in risk and decision analysis”Civil Engineering Systemsvol. 2, 1985, pp. 201–208.

    Article  Google Scholar 

  52. J. Keller, M. Gray, and J. Givens, “A fuzzy k-nearest neighbor algorithm,”IEEE Transactions on System. Man and Cyberneticsvol. 15, 1985, pp. 580–585.

    Article  Google Scholar 

  53. J. Keller, D. Subhanghasen, K. Unldesbay, and N. Unklesbay, “An approximate reasoning technique for recogntion in color images of beef steaks”International Journal General Systemsto appear, 1990.

    Book  Google Scholar 

  54. A. Nafarieh and J. Keller, “A fuzzy logic rule-based automatic target recognizes”International Journal of Intelligent Systemsto appear, 1990.

    Google Scholar 

  55. L. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”Information SciencesPart 1, Vol. 8, pp. 199–249; Part 2, Vol. 8, pp. 301–357; Part 3, Vol. 9, pp. 43–80, 1975.

    Google Scholar 

  56. J. Keller and H. Tahani, “Backpropagation neural networks for fuzzy logic”Information Sciencesto appear 1990.

    Google Scholar 

  57. J. Keller and R. Yager, “Fuzzy logic inference neural networks”Proceedings of the SPIE Symposium on Intelligent Robots and Computer Vision VIII1989, pp. 582–591.

    Google Scholar 

  58. J. Keller and H. Tahani, “Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks”International Journal of Approximate Reasoningto appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, J.M., Krishnapuram, R. (1992). Fuzzy Set Methods in Computer Vision. In: Yager, R.R., Zadeh, L.A. (eds) An Introduction to Fuzzy Logic Applications in Intelligent Systems. The Springer International Series in Engineering and Computer Science, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3640-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3640-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6619-5

  • Online ISBN: 978-1-4615-3640-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics