Advertisement

Fuzzy Logic with Linguistic Quantifiers in Group Decision Making

  • Janusz Kacprzyk
  • Mario Fedrizzi
  • Hannu Nurmi
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 165)

Abstract

We present how fuzzy logic with linguistic quantifiers, mainly its calculi of linguistically quantified propositions, can be used in group decision making. Basically, the fuzzy linguistic quantifiers (exemplified bymost, almost all,...) are employed to represent a fuzzy majority which is in many cases closer to a real human perception of the very essence of majority. Fuzzy logic provides here means for a formal handling of such a fuzzy majority which was not possible by using traditional formal apparata. Using a fuzzy majority, and assuming fuzzy individual and social preference relations, we redefine solution concepts in group decision making, and present new «soft» degrees of consensus.

Keywords

Fuzzy logic linguistic quantifier fuzzy preference relation fuzzy majority group decision making social choice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Arrow K. J. (1963)Social Choice and Individual Values2nd ed. Yale University Press, New Haven.Google Scholar
  2. Blin J. M. and A. P. Whinston (1973), NFuzzy sets and social choice.Journal of Cybernetics, 4, 17–22.CrossRefGoogle Scholar
  3. Braybrook D. and C. Lindblom (1963)A Strategy of Decision.Free Press, New York.Google Scholar
  4. Calvert R. (1986)Models of Imperfect Information in Politics.Harwood Academic Publishers, Chur.Google Scholar
  5. Fedrizzi M. (1986)Group decisions and consensus: a model using fuzzy sets theory (inItalian). Rivista per le scienze econ. e soc. A. 9, F. 1, 12–20.MathSciNetGoogle Scholar
  6. Fedrizzi M. and J. Kacprzyk (1988)On measuring consensus in the setting of fuzzy preference relations.In J. Kacprzyk and M. Roubens (Eds.), Non — Conventional Preference Relations in Decision Making. Springer — Verlag, Berlin — New York — Tokyo, 129 —141.Google Scholar
  7. Fedrizzi M, J Kacprzyk and S. Zadrozny (1988), Aninteractive multi — user decision support system for consensus reaching processes using fuzzy logic with linguistic quantifiers.Decision Support Systems 4, 313 —327.Google Scholar
  8. Kacprzyk J. (1984)Collective decision making with a fuzzy majority rule.Proc. WOGSC Congress, AFCET, Paris, 153–159.Google Scholar
  9. Kacprzyk J. (1985a)Zadeh’s commonsense knowledge and its use in multicriteria multistage and multiperson decision making.In M. M. Gupta et al. (Eds.), Approximate Reasoning in Expert Systems, North — Holland, Amsterdam, 105–121.Google Scholar
  10. Kacprzyk J. (1985b)Some “commonsense” solution concepts in group decision making via fuzzy linguistic quantifiers.In J. Kacprzyk and R. R. Yager (Eds.), Management Decision Support Systems Using Fuzzy Sets and Possibility Theory. Verlag TÜV Rheinland, Cologne, 125–135.Google Scholar
  11. Kacprzyk J. (1985c)Group decision - making with a fuzzy majority via linguistic quantifiers. Part I: A consensory — like pooling; Part II: A competitive - like pooling.Cybernetics and Systems: an Int. Journal 16, 119–129 (Part I), 131–144 (Part II).Google Scholar
  12. Kacprzyk J. (1986a) Group decision making with a fuzzy linguistic majority.Fuzzy Sets and Systems 18, 195–118.MathSciNetCrossRefGoogle Scholar
  13. Kacprzyk J. (1986b)Towards an algorithmiclprocedural “human consistency” of decision support systems: a fuzzy logic approach.In W. Karwowski and A. Mitai (Eds.), Applications of Fuzzy Sets in Human Factors. Elsevier, Amsterdam, pp. 101–116.Google Scholar
  14. Kacprzyk J. (1987a)On some fuzzy cores and “soft” consensus measures in group decision making.In J. C. Bezdek (Ed.), The Analysis of Fuzzy Information, Vol. 2. CRC Press, Boca Raton, pp. 119–130.Google Scholar
  15. Kacprzyk J. (1987b)Towards “human consistent” decision support systems through commonsense — knowledge — based decision making and control models: a fuzzy logic approach.Computers and Artificial Intelligence 6, 97–122.zbMATHGoogle Scholar
  16. Kacprzyk J. and Fedrizzi M. (1986)“Soft” consensus measures for monitoring real consensus reaching processes under fuzzy preferences.Control and Cybernetics 15, 309–323.MathSciNetGoogle Scholar
  17. Kacprzyk J. and Fedrizzi M. (1988)A “soft” measure of consensus in the setting of partial (fuzzy) preferences.European Journal of Operational Research 34, 315–325.MathSciNetCrossRefGoogle Scholar
  18. Kacprzyk J. and Fedritii M. (1989), A“human—consistent” degree of consensus based on fuzzy logic with linguistic quantifiers.Mathematical Social Sciences 18, 275–290.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Kacprzyk J. and Fedrizzi M., Eds. (1990)Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory.Kluwer, Dordrecht — Boston — Lancaster — Tokyo.zbMATHGoogle Scholar
  20. Kacprzyk J., Fedrizzi M. and Nurmi H. (1990)Group decision making with fuzzy majorities represented by linguistic quantifiers.In J.L. Verdegay and M. Delgado (Eds.): Approximate Reasoning Tools for Artificial Intelligence. Verlag TUV Rheinland, Cologne, 126–145.Google Scholar
  21. Kacprzyk J. and Nurmi H (1989)Linguistic quantifiers and fuzzy majorities for more realistic and human-consistent group decision makingin G. Evans, W. Karwowski and M. Wilhelm (Eds.): Fuzzy Methodologies for Industrial and Systems Engineering, Elsevier, Amsterdam, 267–281.Google Scholar
  22. Kacprzyk J. and Nurmi H. (1990)On fuzzy tournaments and their solution concepts in group decision making.European Journal of Operational Research (forthcoming).Google Scholar
  23. Kacprzyk J. and Roubens M., Eds. (1988)Non — Conventional Preference Relations in Decision Making.Springer — Verlag, Berlin — New York — Tokyo.zbMATHGoogle Scholar
  24. Kacprzyk J. and Yager R. R. (1984a)Linguistic quantifiers and belief qualification in fuzzy multicriteria and multistage decision making.Control and Cybernetics 13,155–173.MathSciNetzbMATHGoogle Scholar
  25. Kacprzyk J. and Yager R. R. (1984b)“Softer” optimization and control models via fuzzy linguistic quantifiers.Information Sciences 34, 157–178.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Kacprzyk J., S. Zadrozny and M. Fedrizzi (1988), Aninteractive user — friendly decision support system for consensus reaching based on fuzzy logic with linguistic quantifiers.In M.M. Gupta and T. Yamakawa (Eds.): Fuzzy Computing. Elsevier, Amsterdam, 307–322.Google Scholar
  27. Loewer B., Guest Ed. (1985)Special Issue on Consensus.Synthese 62, No. 1.Google Scholar
  28. Loewer B. and Laddaga R. (1985)Destroying the consensus.In Loewer (1985), 79–96.Google Scholar
  29. Mckelvey R. D. (1979)General Conditions for Global Intransitivities in Formal Voting Models.Econometrica 47, 1085–1111.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Nurmi H. (1981)Approaches to collective decision making with fuzzy preference relations.Fuzzy Sets and Systems 6, 249–259.Google Scholar
  31. Nurm H. (1983)Voting procedures: a summary analysis.British Journal of Political Science 13, 181–208.Google Scholar
  32. Nurmi H. (1987)Comparing Voting Systems.Reidel, Dordrecht — Boston — Lancaster — Tokyo.CrossRefGoogle Scholar
  33. Nurmi H. (1988)Assumptions on individual preferences in the theory of voting procedures.In Kacprzyk and Roubens (1988), pp. 142–155.Google Scholar
  34. Nurmi H., M. Fedrizzi and J. Kacprzyk (1990)Vague notions in the theory of voting.In J. Kacprzyk and M. Fedrizzi (Eds.): Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory. Kluwer, Dordrecht — Boston — Lancaster — Tokyo, 43–52.CrossRefGoogle Scholar
  35. Schofield N. (1984)Existence of Equilibrium on a Manifold.Mathematics of Operations Research 9, 545–557.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Simon H. A. (1972)Theories of Bounded Rationality.In C.B. McGuire and R. radner (Eds.): Decision and Organization. North-Holland, Amsterdam.Google Scholar
  37. Safferthwaite M. (1975)Strategy-proofness and Arrow’s Conditions: Existence and Correspondence Theorem for Voting Procedures and Social Welfare Functions.Journal of Economic Theory 10,187–217.MathSciNetCrossRefGoogle Scholar
  38. Tanino T. (1988)Fuzzy preference relations in group decision making.In Kacprzyk and Roubens (1988), 54–71.Google Scholar
  39. Yager R. R. (1983a)Quantifiers in the formulation of multiple objective decision functions.Information Sciences 31,107–139.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Yager R. R. (1983b)Quantified propositions in a linguistic logic.International Journal of Man — Machine Studies 19,195–227.zbMATHCrossRefGoogle Scholar
  41. Yager R. R. (1984)General multiple — objective decision functions and linguistically quantified statements.International Journal of Man — Machine Studies 21, 389 — 400.Google Scholar
  42. Yager R. R. (1985a)Reasoning with fuzzy quantified statements: Part I.Kybernetes 14, 233–240.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Yager R. R. (1985b)Aggregating evidence using quantified statements.Information Sciences 3,179–206.MathSciNetCrossRefGoogle Scholar
  44. Yager R. R. (1986)Reasoning with fuzzy quantified statements: Part II.Kybernetes 15, 111–120.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Zadeh L. A. (1983)A computational approach to fuzzy quantifiers in natural languages.Computers and Mathematics with Applications 9,149–184.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Zadeh L. A. (1985)Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions.IEEE Transactions on Systems, Man and Cybernetics SMC —15, 754–763.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Janusz Kacprzyk
    • 1
  • Mario Fedrizzi
    • 2
  • Hannu Nurmi
    • 3
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Institute of InformaticsUniversity of TrentoTrentoItaly
  3. 3.Department of Political ScienceUniversity of TurkuTurkuFinland

Personalised recommendations