Questionnaires represent hierarchical processes disjoining the elements of a given set by using successive tests or operators [12]. They involve the probabilities of the results of the tests, or the probabilities of the modalities of the operators. In the case where the tests or operators depend on imprecise factors, such as the accuracy of physical measurements or the linguistic description of variables, the questionnaires take into account coefficients evaluating the fuzziness of the data. The construction of such questionnaires is submitted to several kinds of constraints and requires appropriate algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akdag, H., Bouchon, B. (1988) - Using fuzzy set theory in the analysis of structures of informationFly Sets and Systems. 3, 28.Google Scholar
  2. [2]
    Auray J.P., Duru G., Terrenoire M., Tounissoux D. Zighed A. (1985) - Un logiciel pour une méthode de segmentation non arborescenteInformatique et Sciences Humainesvol. 64.Google Scholar
  3. [3]
    Bouchon B. (1981) - Fuzzy questionnairesFuzzy Sets and Systems6, pp. 1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Bouchon B. (1985) - Questionnaires in a fuzzy setting, inManagement decision support systems using fuzzy sets and possibility theoryeds. J. Kacprzyk and R.R. Yager, Verlag TUV Rheinland, 189–197.Google Scholar
  5. [5]
    Bouchon, B. (1987) - Preferences deduced from fuzzy questions, inSoft optimization models using fuzzy sets and possibility theory(J. Kacprzyk and S.A. Orlovski, eds), D. Reidel Publishing Company pp. 110–120.Google Scholar
  6. [6]
    Bouchon, B. (1988) - Questionnaires with fuzzy and probabilistic elements, inCombining fuzzy imprecision with probbilistic uncertaintyindecision making(J. Kacprzyk, M. Fedrizzi, eds.), Springer Verlag, pp. 115–125.Google Scholar
  7. [7]
    Bouchon, B. (1990) - Sequences of questions involving linguistic variables; inApproximate reasoning tools for artificial intelligence(M. Delgado, J.L. Verdegay, eds.), Verlag TUV Rheinland.Google Scholar
  8. [8]
    Bouchon B., Cohen, G. (1986) - Partitions and fuzzinessJ. of Mathematical Analysis and Applicationsvol. 113, 1986.Google Scholar
  9. [9]
    Dubois, D., Prade, H. (1987) -Théorie des possibilités. applications à la représentation des connaissances en informatiqueMasson.Google Scholar
  10. [10]
    Farreny H., Prade H., Wyss E. (1986) - Approximate reasoning in a rule-based expert system using possibility theory: a case study, ininformation Processing(H.J. Kugler, ed.), Elsevier Science Publishers B.V..Google Scholar
  11. [11]
    Payne R. (1985) - Genkey: a general program for constructing aids to identificationInformatique et Sciences Humainesvol. 64.Google Scholar
  12. [12]
    Picard C.F. (1980) -Graphs and questionnairesNorth Holland,Amsterdam.zbMATHGoogle Scholar
  13. [13]
    Terrenoire M. (1970) - Pseudoquestionnaires et informationC.R. AcadSc, 271 A, pp. 884–887.MathSciNetGoogle Scholar
  14. [14]
    M. Terrenoire (1970) - PseudoquestionnairesThèse de Doctorat d’EtatLyon.Google Scholar
  15. [15]
    E. Wyss (1988) - TAIGER, un générateur de systèmes experts adapté au traitement de données incertaines et imprécisesThèseInstitut National Polytechnique de Toulouse.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bernadette Bouchon-Meunier
    • 1
  1. 1.CNRS, LAFORIAUniversité Paris VIParis Cédex 05France

Personalised recommendations