Skip to main content

Optical Techniques for Image Compression*

  • Chapter
Image and Text Compression

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 176))

  • 156 Accesses

Abstract

Optical computing has recently become a very active research field. The advantage of optics is its capability of providing highly parallel operations in a three dimensional space. Image compression suffers from large computational requirements. We propose optical architectures to execute various image compression techniques, utilizing the inherent massive parallelism of optics.

We optically implement the following compression and corresponding decompression techniques:

  • • transform coding

  • • vector quantization

  • • interframe coding for video

We show many generally used transform coding methods, for example, the cosine transform, can be implemented by a simple optical system. The transform coding can be carried out in constant time.

Most of this paper is concerned with an innovative optical system for vector quantization using holographic associative matching. Limitations of conventional vector quantization schemes are caused by a large number of sequential searches through a large vector space. Holographic associative matching provided by multiple exposure holograms can offer advantageous techniques for vector quantization based compression schemes. Photorefractive crystals, which provide high density recording in real time, are used as our holographic media. The reconstruction alphabet can be dynamically constructed through training or stored in the photorefractive crystal in advance. Encoding a new vector can be carried out by holographic associative matching in constant time.

An extension to interframe coding is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. K. Jain, “Image Data Compression: A Review,” Proceedings of the IEEE 69, 349–389 (1981).

    Article  Google Scholar 

  2. —, DCC’ 91 Data Compression Conference, J. A. Storer and J. H. Reif, ed. (IEEE Computer Society Press, Los Alamitos, California, 1991).

    Google Scholar 

  3. R. M. Gray, “Vector Quantization,” IEEE ASSP Mag. April, 4-29 (1984).

    Google Scholar 

  4. N. M. Nasrabadi and R. A. King, “Image Coding Using Vector Quantization: A Review,” IEEE Trans. Commun. COM-36, 957–971 (1988).

    Article  Google Scholar 

  5. J. W. Goodman, F. J. Leonberger, S. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proceedings of the IEEE 72, 850–866 (1984).

    Article  Google Scholar 

  6. A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72, 758–779 (1984).

    Article  Google Scholar 

  7. T. E. Bell, “Optical Computing: A field in flux,” IEEE Spectrum 23(8), 34–57 (1986).

    Google Scholar 

  8. D. Feitelson, Optical Computing, A Survey for Computer Scientists, (MIT Press, Cambridge, Mass., 1988).

    Google Scholar 

  9. J. D. Ullman, Computational Aspects of VLSI, (Computer Science Press, Rockwille, Md., 1984).

    MATH  Google Scholar 

  10. R. Barakat and J. H. Reif, “Lower Bounds on the Computational Efficiency of Optical Computing Systems,” Appl. Opt. 26, 1015–1018 (1987).

    Article  Google Scholar 

  11. J. H. Reif and A. Tyagi, “Efficient Parallel Algorithms for Optical Computing with the DFT Primitive,” 10th Conference on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, (Springer-Verlag, Bangalor, India 1990).

    Google Scholar 

  12. K. Preston, Coherent optical computers, (McGraw-Hill, New York, 1972).

    Google Scholar 

  13. F. T. S. Yu, Optical information processing, (Wiley, New York, 1983).

    Google Scholar 

  14. T. Kohonen, Self-Organization and Associative Memory, 2nd ed. (Springer-Verlag, New York, 1988).

    Book  MATH  Google Scholar 

  15. N. Farhat, D. Psaltis, A. Prata, and E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).

    Article  Google Scholar 

  16. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).

    Article  Google Scholar 

  17. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York 1968).

    Google Scholar 

  18. H. J. Caulfield, “Associative mapping by optical holography,” Opt. Commun. 55, 80–82 (1985).

    Article  Google Scholar 

  19. A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phy. Lett. 48, 1114–1116 (1986).

    Article  Google Scholar 

  20. B. H. Soffer, G. J. Dunning, Y. Owechko, and E. Marom, “Associative holographic memory with feedback using phase conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).

    Article  Google Scholar 

  21. Y. Owechko, G. J. Dunning, E. Marom, and B. H. Soffer, “Holographic associative memory with nonlinearities in the correlation domain,” Appl. Opt. 26, 1900–1910 (1987).

    Article  Google Scholar 

  22. H. Kang, C. X. Yang, G. G. Mu, and Z. K. Wu, “Real-time holographic associative memory using doped LiNbO3 in a phase-conjugating resonator,” Opt. Lett. 15, 637–639 (1990).

    Article  Google Scholar 

  23. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput. C-23, 90–93 (1974).

    Article  MathSciNet  Google Scholar 

  24. R. J. Clarke, Transform Coding of Images, (Academic Press, London, 1985).

    Google Scholar 

  25. Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantizer Design,” IEEE Trans. Commun. COM-28, 84–95 (1980).

    Article  Google Scholar 

  26. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, (Academic Press, Orlando, Florida, 1971).

    Google Scholar 

  27. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).

    Article  Google Scholar 

  28. W. J. Burke, D. L. Staebler, W. Phillips, and G. A. Alphonse, “Volume Phase Holographic Storage in Ferroelectric Crystals,” Opt. Eng. 17, 308 (1978).

    Google Scholar 

  29. A. C. Strasser, E. S. Maniloff, K. M. Johnson, and S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).

    Article  Google Scholar 

  30. W. P. Bleha, L. T. Lipton, E. W. Wiener-Avner, J. Grinberg, P. G. Reif, D. Casasent, H. B. Brown, and B. V. Markevitch, “Application of the Liquid Crystal Light Valve to Real-Time Optical Data Processing,” Opt. Eng. 17, 371–384 (1978).

    Google Scholar 

  31. H. Lee, “Volume holographic global and local interconnecting patterns with maximal capacity and minimal first-order crosstalk,” Appl. Opt. 28, 5312–5316 (1989).

    Article  Google Scholar 

  32. H. Lee, X. Gu and D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).

    Article  Google Scholar 

  33. A. VanderLugt, “Coherent optical processing,” Proceedings of the IEEE 62, 1300–1319 (1974).

    Article  Google Scholar 

  34. D. Casasent, “Coherent optical pattern recognition,” Proceedings of the IEEE 67, 813–825 (1979).

    Article  Google Scholar 

  35. B. Javidi and J. L. Horner, “Single spatial light modulator joint transform correlator,” Appl. Opt. 28, 1027–1032 (1989).

    Article  Google Scholar 

  36. T. D. Hudson and D. A. Gregory, “Joint transform correlation using an optically addressed ferroelectric LC spatial light modulator,” Appl. Opt. 29, 1064–1066 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reif, J.H., Yoshida, A. (1992). Optical Techniques for Image Compression*. In: Storer, J.A. (eds) Image and Text Compression. The Kluwer International Series in Engineering and Computer Science, vol 176. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3596-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3596-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6598-3

  • Online ISBN: 978-1-4615-3596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics