Skip to main content

The Lactic Microflora of Pigs, Mice and Rats

  • Chapter
The Lactic Acid Bacteria Volume 1

Abstract

The bodies of healthy vertebrate animals harbour a large and complex collection of microbes. These microbes are referred to collectively as the normal microflora. Although the microflora contains fungal and protozoan members, bacterial species predominate. Viruses, while commonly detected in clinically healthy animals, are obligate intracellular parasites and are generally not included as members of the normal microflora. Body surfaces, or sites within the body that open to the external environment by one or more orifices, are colonised by a microflora. Since each body site has characteristic host-derived secretions and functions associated with it, different collections of microbes have evolved in association with each body region. Thus the normal microflora of the skin differs from that of the oral cavity, digestive tract or vagina. Each body site and its associated microflora comprises an ecosystem in which intermicrobial and microbe—host interactions occur (Tannock, 1981, 1988a). In adult animals, an apparently stable situation exists since microbiological sampling of the ecosystem reveals the presence of the same microbial species, in the same proportions, over a period of time (Savage, 1977). The concept of a stable ecosystem is now being challenged, however, since there is evidence that the strains representing a particular species in the ecosystem change with time (Tannock et al., 1990a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson, L. & Lindgren, S. (1987). Characterization and DNA homology of Lactobacillus strains isolated from the pig intestine. Journal of Applied Bacteriology,62, 433–40.

    Google Scholar 

  • Axelsson, L.T., Chung, T.C., Dobrogosz, W.J. & Lindgren, S.E. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbiology, Ecology, Health and Disease, 2,131–6.

    Article  Google Scholar 

  • Barefoot, S.F. & Klaenhammer, T.R. (1983). Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied Environmental Microbiology, 45, 1808–15.

    Google Scholar 

  • Barefoot, S.F. & Klaenhammer, T.R. (1984). Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrobial Agents and Chemotherapy, 26, 328–34.

    Google Scholar 

  • Barrow, P.A., Brooker, B.E., Fuller, R. & Newport, M.J. (1980). The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. Journal of Applied Bacteriology, 48, 147–54.

    Google Scholar 

  • Bivin, W.S., Crawford, M.P. & Brewer, N.R. (1979). The digestive system. In The Laboratory Rat (vol. 1), ed. H.J. Baker, J.R. Lindsey & S.H. Weisbroth. Academic Press, New York, USA, pp. 77–82.

    Google Scholar 

  • Brunel, A. & Gouet, P. (1982). Kinetics of the establishment of gastrointestinal microflora in the conventional new-born rat. Annales Microbiologie (Institut Pasteur), 133B, 325–34.

    Google Scholar 

  • Christensen, G.D., Simpson, W.A. & Beachey, E.H. (1985). Adhesion of bacteria to animal tissues: complex mechanisms. In Bacterial Adhesion, Mechanisms and Physiological Significance, ed. D.C. Savage & M. Fletcher. Plenum Publishing Corp., New York, USA, pp. 279–305.

    Google Scholar 

  • Chung, T.C., Axelsson, L., Lindgren, S.E. & Dobrogosz, W.J. (1989). In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microbiology, Ecology, Health and Disease, 2, 137–44.

    Article  Google Scholar 

  • Cole, C.B. & Fuller, R. (1984). Bile acid deconjugation and attachment of chicken gut bacteria: their possible role in growth depression. British Poultry Science, 25, 227–31.

    Article  Google Scholar 

  • Collins, M.D., Jones, D., Farrow, J.A.E., Kilpper-Balz, R. & Schleifer, K.H. (1984). Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. International Journal of Systematic Bacteriology, 34, 220–3.

    Article  Google Scholar 

  • Conway, P.L. & Kjelleberg, S. (1989). Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium. Journal of General Microbiology, 135, 1175–86.

    Google Scholar 

  • Cooperstock, M.S. & Zedd, A.J. (1983). Intestinal flora of infants. In Human Intestinal Flora in Health and Disease,ed. D.J. Hentges. Academic Press, New York, USA, pp. 79–99.

    Google Scholar 

  • De Klerk, H.C. & Coetzee, J.N. (1961). Antibiosis among lactobacilli. Nature (London), 192, 340–1.

    Article  Google Scholar 

  • Drasar, B.S. & Hill, M.J. (1974). Human Intestinal Flora. Academic Press, London, UK.

    Google Scholar 

  • Dubos, R., Schaedler, R.W., Costello, R. & Hoet, P. (1965). Indigenous, normal, and authochthonous flora of the gastrointestinal tract. Journal of Experimental Medicine, 122, 67–75.

    Article  Google Scholar 

  • Dubos, R.J., Savage, D.C. & Schaedler, R.W. (1967). The indigenous flora of the gastrointestinal tract. Diseases of the Colon and Rectum, 10, 23–34.

    Article  Google Scholar 

  • Ducluzeau, R., Dubos, F. & Raibaud, P. (1971). Effet antagoniste d’une souche de Lactobacillus sur une souche de Ristella sp. dans le tube digestif de souris ‘gnotoxeniques’ absorbant du lactose. Annals of the Institute Pasteur (Paris), 121, 777–94.

    Google Scholar 

  • Eyssen, H., Swaelen, E., Kowszyk-Gindifer, Z. & Parmentier, G. (1965). Nucleotide requirements of Lactobacillus acidophilus variants isolated from the crops of chicks. Antonie van Leeuwenhoek, 31, 241–8.

    Article  Google Scholar 

  • Finegold, S.M. (1977). Anaerobic Bacteria in Human Disease. Academic Press, New York, USA.

    Google Scholar 

  • Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365–78.

    Google Scholar 

  • Fuller, R. & Brooker, B.E. (1974). Lactobacilli which attach to the crop epithelium of the fowl. American Journal of Clinical Nutrition, 27, 1305–12.

    Google Scholar 

  • Fuller, R., Newland, L.G.M., Briggs, C.A.E., Braude, R. & Mitchell, K.G. (1960). The normal intestinal flora of the pig. IV. The effect of dietary supplements of penicillin, chlortetracycline or copper sulphate on the faecal flora. Journal of Applied Bacteriology, 23, 195–205.

    Google Scholar 

  • Fuller, R., Barrow, P.A. & Brooker, B.E. (1978). Bacteria associated with the gastric epithelium, of neonatal pigs, Applied Environmental Microbiology, 35, 582–91.

    Google Scholar 

  • Gilliland, S.E., Speck, M.L. & Morgan, C.G. (1975). Detection of Lactobacillus acidophilus in feces of humans, pigs, and chickens. Applied Microbiology, 30, 541–5.

    Google Scholar 

  • Gordon, H.A. & Pesti, L. (1971). The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriological Reviews, 35, 390–429.

    Google Scholar 

  • Gracey, M. (1983). The contaminated small bowel syndrome. In Human Intestinal Microflora in Health and Disease,ed. D.J. Hentges. Academic Press, New York, USA, pp. 495–515.

    Google Scholar 

  • Grunewald, K.K. (1982). Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. Journal of Food Science, 47, 2078–9.

    Article  Google Scholar 

  • Hardie, J.M. (1986). Genus Streptococcus Rosenbach 1884, 22AL. In Bergey’s Manual of Determinative Bacteriology (Vol. 2), ed. P.H.A. Sneath. Williams & Wilkins, Baltimore, USA, pp. 1043–7.

    Google Scholar 

  • Hemme, D., Raibaud, P., Ducluzeau, R., Galpin, J.-V., Sicard, P. & Van Heijenoort, J. (1980). Lactobacillus murinus n. sp., une nouvelle espece de la flore dominante autochtone du tube digestif du rat et de la souris. Annales Microbiologie (Inst. Pasteur), 131A, 297–308.

    Google Scholar 

  • Hobson, P.N. & Wallace, R.J. (1982). Microbial ecology and activities in the rumen. Parts I & II. CRC Critical Reviews in Microbiology, 9, 165–225, 253–320.

    Google Scholar 

  • Hurst, A. (1981). Nisin. Advances in Applied Microbiology, 27, 85–123.

    Article  Google Scholar 

  • Itoh, K., Oowada, T. & Mitsuoka, T. (1985). Characteristic faecal flora of NC mice. Laboratory Animals, 19, 7–15.

    Article  Google Scholar 

  • Joerger, M.C. & Klaenhammer, T.R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology,167, 439–46.

    Google Scholar 

  • Kandler, O. & Weiss, N. (1986). Regular, nonsporing gram-positive rods. In Bergey’s Manual of Determinative Bacteriology (Vol. 2), ed. P.H.A. Sneath. Williams & Wilkins, Baltimore, USA, pp. 1208–34.

    Google Scholar 

  • Kaplan, H.M., Brewer, N.R. & Blair, W.H. (1983). Physiology. In The Mouse in Biomedical Research, ed. H.L. Foster, J.D. Small & J.G. Fox. Academic Press, New York, USA, pp. 247–92.

    Google Scholar 

  • Kato, I., Yokokura, T. & Mutai, M. (1983). Macrophage activation by Lactobacillus casei in mice. Microbiology and Immunology, 27, 611–18.

    Google Scholar 

  • Knox, K.W. & Wicken, A.J. (1973). Immunological properties of teichoic acid. Bacteriological Reviews, 37, 215–57.

    Google Scholar 

  • Koopman, J.P., Kennis, H.M., Stadhouders, A.M., de Boer, H. & Hectors, M.P.C. (1985). Selective elimination of enterobacteriaceae from the digestive tract in rats with trimethoprim. Zeitshrift fur Versuchstierkunde, 27, 143–8.

    Google Scholar 

  • McBee, R.H. (1977). Fermentation in the hindgut. In Microbial Ecology of the Gut, ed. R.T.J. Clarke & T. Bauchop. Academic Press, London, UK, pp. 185–222.

    Google Scholar 

  • McCormick, E.L. & Savage, D.C. (1983). Characterization of Lactobacillus sp. strain 100–37 from the murine gastrointestinal tract: ecology, plasmid content, and antagonistic activity toward Clostridium ramosum Hl. Applied Environmental Microbiology,46, 1103–12.

    Google Scholar 

  • Metchnikoff, E. (1907). The Prolongation of Life. Optimistic Studies. William Heinemann, London, UK.

    Google Scholar 

  • Midtvedt, T. (1985). The influence of antibiotics upon microflora-associated characteristics in man and mammals. In Progress in Clinical and Biological Research (Vol. 181),Germfree Research: Microflora Control and its Applica-tion to the Biomedical Sciences, ed. B. Wostmann. Alan R. Liss, Inc., New York, USA, pp. 241–4.

    Google Scholar 

  • Molitoris, E., Krichevsky, M.I., Fagerberg, D.J. & Quarles, C.L. (1986). Effects of dietary chlortetracycline on the antimicrobial resistance of porcine faecal streptococcaceae. Journal of Applied Bacteriology, 60, 111–20.

    Google Scholar 

  • Morishita, T., Fukada, T., Shirota, M. & Yura, T. (1974). Genetic basis of nutritional requirements in Lactobacillus casei. Journal of Bacteriology, 120, 1078–84.

    Google Scholar 

  • Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T., & Yura, T. (1981). Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. Journal of Bacteriology, 148, 64–71.

    Google Scholar 

  • Morishita, Y. & Shiromizu, K. (1987). Effects of dietary lactose and purified diet on intestinal microflora of rats. Japanese Journal of Medical Science & Biology, 40, 15–26.

    Google Scholar 

  • Mundt, J.O. (1986). Enterococci. In Bergey’s Manual of Determinative Bacteriology (Vol. 2), ed. P.H.A. Sneath. Williams & Wilkins, Baltimore, USA, pp. 1063–5.

    Google Scholar 

  • Muriana, P.M. & Klaenhammer, T.R. (1987). Conjugal transfer of plasmidencoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Applied Environmental Microbiology, 53, 553–60.

    Google Scholar 

  • Ozawa, K., Yabu-Uchi, K., Yamanaka, K, Yamashita, Y., Nomura, S. & Oku, I. (1983). Effect of Streptococcus faecalis BIO-4R on intestinal flora of weanling piglets and calves. Applied Environmental Microbiology, 45, 1513–18.

    Google Scholar 

  • Pedersen, K. & Tannock, G.W. (1989). Colonization of the porcine gastrointestinal tract by lactobacilli. Applied Environmental Microbiology, 55, 279–83.

    Google Scholar 

  • Perdigon, G., de Macias, M.E.N., Alvarez, S., Oliver, G. & de Ruiz Holgado, A.P. (1988). Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology, 63, 17–23.

    Google Scholar 

  • Raibaud, P. (1988). Factors controlling the bacterial colonization of the neonatal intestine. In Biology of Human Milk, ed. L.A. Hanson. Raven Press, New York, USA, pp. 205–19.

    Google Scholar 

  • Ratcliffe, B. (1985). The influence of the gut microflora on the digestive processes. In Digestive Physiology in the Pig, ed. A. Just, H. Jorgensen & J.A. Fernandez, National Institute of Animal Science, Copenhagen, Denmark, pp. 245–67.

    Google Scholar 

  • Reddy, G.V., Shahani, K.M., Friend, B.A. & Chandan, R.C. (1984). Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. III. Production and partial purification of bulgarican from Lactobacillus bulgaricus. Cultured Dairy Products Journal, 19, 7–11.

    Google Scholar 

  • Roach, S., Savage, D.C. & Tannock, G.W. (1977). Lactobacilli isolated from the stomach of conventional mice. Applied Environmental Microbiology, 33, 1197–203.

    Google Scholar 

  • Robinson, I.M., Whipp, S.C., Bucklin, J.A. & Allison, M.J. (1984). Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Applied Environmental Microbiology, 48, 964–9.

    Google Scholar 

  • Robinson, I.M., Stromley, J.M., Varel, V.H. & Cato, E.P. (1988) Streptococcus intestinalis, a new species from the colons and feces of pigs. International Journal of Systematic Bacteriology, 38, 245–8.

    Article  Google Scholar 

  • Roszkowski, K., Ko, H.L., Waaij, D., van der, Roszkowski, W., Jeljaszewicz, J. & Pulverer, G. (1987). Antibiotic treatment, intestinal aerobic microflora and experimental sarcoma L-1 growth in BALB/c-mice. Zentralblatt fur Bakteriologie and Hygiene, A, 265, 378–84.

    Google Scholar 

  • Russell, E.G. (1979). Types and distribution of anaerobic bacteria in the large intestine of pigs. Applied Environmental Microbiology, 37, 187–93.

    Google Scholar 

  • Salanitro, J.P., Blake, I.G. & Muirhead, P.A. (1977). Isolation and identification of fecal bacteria from adult swine. Applied Environmental Microbiology, 33, 79–84.

    Google Scholar 

  • Sato, K. (1984). Enhancement of host resistance against Listeria infection by Lactobacillus casei: role of macrophages. Infection and Immunity, 44, 445–51.

    Google Scholar 

  • Savage, D.C. (1969). Microbial interference between indigenous yeast and lac-tobacilli in the rodent stomach. Journal of Bacteriology, 98, 1278–83.

    Google Scholar 

  • Savage, D.C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31, 107–33.

    Article  Google Scholar 

  • Savage, D.C. & Dubos, R. (1968). Alterations in the mouse cecum and its flora produced by antibacterial drugs. Journal of Experimental Medicine, 128, 97–110.

    Article  Google Scholar 

  • Savage, D.C., Dubos, R. & Schaedler, R.W. (1968). The gastrointestinal epithelium and its autochthonous bacterial flora. Journal of Experimental Medicine, 127, 67–76.

    Article  Google Scholar 

  • Scardovi, V. (1986). Genus Bfidobacterium Orla-Jensen 1924,472AL. In Bergey’s Manual of Determinative Bacteriology, (Vol. 2), ed. P.H.A. Sneath. Williams & Wilkins, Baltimore, USA, pp. 1418–34.

    Google Scholar 

  • Schaedler, R.W. & Dubos, R.J. (1962). The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin. Journal of Experimental Medicine, 115, 1149–60.

    Article  Google Scholar 

  • Schaedler, R.W., Dubos, R. & Costello, R. (1965). The development of the bacterial flora in the gastrointestinal tract of mice. Journal of Experimental Medicine, 122, 59–66.

    Article  Google Scholar 

  • Schleifer, K.H. (1987). Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiology Review, 46, 201–3.

    Article  Google Scholar 

  • Shahani, K.M., Vakil, J.R. & Kilara, A. (1977). Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. II. isolation of acidophilin from L. acidophilus. Cultured Dairy Products Journal, 12, 8–11.

    Google Scholar 

  • Sherman, L.A. & Savage, D.C. (1986). Lipoteichoic acids in Lactobacillus strains that colonize the mouse gastric epithelium. Applied Environmental Microbiology, 52, 302–4.

    Google Scholar 

  • Silva, M., Jacobus, N.V., Deneke, C. & Gorbach, S.L. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial Agents and Chemotherapy, 31, 1231–3.

    Google Scholar 

  • Smith, H.W. (1965). Observations on the flora of the alimentary tract of animals and factors affecting its composition. Journal of Pathology and Bacteriology, 89, 95–122.

    Article  Google Scholar 

  • Suegara, N., Morotomi, M., Watanabe, T., Kawai, Y. & Mutai, M. (1975). Behavior of the microflora in the rat stomach: adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach. Infection and Immunity, 12, 173–9.

    Google Scholar 

  • Susuki, K., Harasawa, R., Yoshitake, Y. & Mitsuoka, T. (1983). Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Japaneses Journal of Veterinary Science, 45, 331–8.

    Google Scholar 

  • Tagg, J.R., Dajani, A.S. & Wannamaker, L.W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40, 722–56.

    Google Scholar 

  • Talarico, T.L., Casas, I.A., Chung, T.C. & Dobrogosz, W.J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy, 32, 1854–8.

    Google Scholar 

  • Tannock, G.W. (1979). Coliforms and enterococci isolated from the intestinal tract of conventional mice. Microbial Ecology, 5, 27–34.

    Article  Google Scholar 

  • Tannock, G.W. (1981). Microbial interference in the gastrointestinal tract. ASEAN Journal of Clinical Science, 2, 2–34.

    Google Scholar 

  • Tannock, G.W. (1983). Effect of dietary and environmental stress on the gastrointestinal microbiota. In Human Intestinal Microflora in Health and Disease, ed. D.J. Hentges. Academic Press, New York, USA, pp. 517–39.

    Google Scholar 

  • Tannock, G.W. (1984). Control of gastrointestinal pathogens by normal flora. In Current Perspectives in Microbial Ecology, ed. M.J. Klug & C.A. Reddy. American Society for Microbiology, Washington, DC, USA, pp. 374–382.

    Google Scholar 

  • Tannock, G.W. (1988a). The normal microflora: new concepts in health promotion. Microbiological Science, 5, 4–8.

    Google Scholar 

  • Tannock, G.W. (1988b). Molecular genetics: a new tool for investigating the microbial ecology of the gastrointestinal tract? Microbial Ecology, 15, 239–56.

    Article  Google Scholar 

  • Tannock, G.W. (1990). The microecology of lactobacilli inhabiting the gastrointestinal tract. Advances in Microbial Ecology, 11, 147–71.

    Google Scholar 

  • Tannock, G.W. & Archibald, R.D. (1984). The derivation and use of mice which do not harbour lactobacilli in the gastrointestinal tract. Canadian Journal of Microbiology, 30, 849–53.

    Article  Google Scholar 

  • Tannock, G.W. & Savage, D.C. (1974). Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infection and Immunity, 9, 591–8.

    Google Scholar 

  • Tannock, G., Blumershine, R. & Archibald, R. (1987). Demonstration of epithelium-associated microbes in the oesophagus of pigs, cattle, rats and deer. FEMS Microbiology Ecology, 45, 199–203.

    Article  Google Scholar 

  • Tannock, G.W., Crichton, C., Welling, G.W., Koopman, J.P. & Midtvedt, T. (1988). Reconstitution of the gastrointestinal microflora of lactobacillus-free mice. Applied Environmental Microbiology, 54, 2971–5.

    Google Scholar 

  • Tannock, G.W., Dashkevitz, M.P. & Feighner, S.D. (1989). Lactobacilli and bile salt hydrolase in the murine intestinal tract. Applied Environmental Microbiology, 55, 1848–51.

    Google Scholar 

  • Tannock, G.W., Fuller, R. & Pedersen, K. (1990a). A lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling. Applied Environmental Microbiology, 56, 1310–16.

    Google Scholar 

  • Tannock, G.W., Fuller, R., Hall, M.A. & Smith, S. (1990b). Plasmid-profiling of Enterobacteriaceae, lactobacilli and bifidobacteria to study the transmission of bacteria from mother to infant. Journal of Clinical Microbiology, 28, 1225–8.

    Google Scholar 

  • Visek, W.J. (1978). The mode of growth promotion by antibiotics. Journal of Animal Science, 46, 1447–69.

    Google Scholar 

  • Waaij, D., van der, Berghuis, J.M. & Lekkerkerk, J.E.C. (1972). Colonization resistance of the digestive tract of mice during systemic antibiotic treatment. Journal of Hygiene (Cambridge) 70, 605–10.

    Article  Google Scholar 

  • Waaij, D., van der (1979). The colonization resistance of the digestive tract in experimental animals and its consequences for infection prevention, acquisition of new bacteria and the prevention of spread of bacteria between cage mates. In New Criteria for Antimicrobial Therapy: Maintenance of Digestive Tract Colonization Resistance, ed. D. van der Waaij & J. Verhoef. Excerpta Medica, Amsterdam, The Netherlands, pp. 43–53.

    Google Scholar 

  • Watanabe, T., Morotomi, M., Suegara, N., Kuwai, Y., & Mutai, M. (1977a). Distribution of indigenous lactobacilli in the digestive tract of conventional and gnotobiotic rats. Microbiology and Immunology, 21,183–91.

    Google Scholar 

  • Watanabe, T., Morotomi, M., Kawai, Y. & Mutai, M. (1977b). Reduction of population levels of some indigenous bacteria by lactobacilli in the gastrointestinal tract of gnotobiotic rats. Microbiology and Immunology, 21, 495–503.

    Google Scholar 

  • Wesney, E. & Tannock, G.W. (1979). Association of rat, pig and fowl biotypes of lactobacilli with the stomach of gnotobiotic mice. Microbial Ecology, 5, 35–42.

    Article  Google Scholar 

  • Whitt, D.D. & Savage, D.C. (1988). Influence of indigenous microbiota on activities of alkaline phosphatase, phosphodiesterase I, and thymidine kinase in mouse enterocytes. Applied Environmental Microbiology, 53, 2405–10.

    Google Scholar 

  • Wicken, A.J. & Knox, K.W. (1980). Bacterial cell surface amphiphiles. Biochimica et Biophysica Acta, 604, 1–26.

    Article  Google Scholar 

  • Yokoyama, M.T. & Carlson, J.R. (1979). Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. American Journal of Clinical Nutrition, 32, 173–8.

    Google Scholar 

  • Yokoyama, M.T. & Carlson, J.R. (1981). Production of skatole and para-cresol by a rumen Lactobacillus sp. Applied Environmental Microbiology, 41, 71–6.

    Google Scholar 

  • Zani, G., Biavati, B., Crociani, F. & Matteuzzi, D. (1974). Bifidobacteria from the faeces of piglets. Journal of Applied Bacteriology, 37, 537–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Tannock, G.W. (1992). The Lactic Microflora of Pigs, Mice and Rats. In: Wood, B.J.B. (eds) The Lactic Acid Bacteria Volume 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3522-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3522-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-720-8

  • Online ISBN: 978-1-4615-3522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics