Skip to main content

Storage of Waste Products for Animal Feed

  • Chapter
The Lactic Acid Bacteria Volume 1

Abstract

Lactic acid fermentation represents a low-cost method for preparation of food and feed products characterised by high hygienic quality and improved shelf-life (Frazier & Westhoff, 1988; McDonald et al., 1991). The technology developed for the fermentation of silage crops relies on a rapid lactic acid production in sufficient concentrations which in combination with anaerobicity suppress spoilage organisms and preserve the feed until it is needed (McDonald et al., 1991). This technology has also been evaluated for the preservation of by-products of animal and vegetable origin to be used as animal feed (Peppler, 1983; Woolford, 1984; Nash, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.R. & Hall, C.J. (1988). Growth inhibition of food-borne pathogens by lactic and acetic acid and their mixtures. International Journal of Food Science and Technology, 23, 287–92.

    Google Scholar 

  • Adams, M.R., Cooke, R.D. & Twiddy, D.R. (1987). Fermentation parameters involved in the production of lactic acid preserved fish-glucose substrates. International Journal of Food Science and Technology,22, 105–14.

    Google Scholar 

  • Anthony, W.B. (1970). Feeding value of cattle manure for cattle. Journal of Animal Science, 30, 274–80.

    Google Scholar 

  • Asbell, G. & Lisker, N. (1987). Chemical and microbial changes occurring in orange peels and in the seepage during ensiling. Biological Wastes, 31, 213–20.

    Article  Google Scholar 

  • Austreng, E., Andersson, A.E. & Skrede, A. (1979). Syrekonservering av forfisk. Norsk Fiskoppdrett, 4, 4–7.

    Google Scholar 

  • Bacus, J.N. (1984). Update: Meat fermentation 1984. Food Technology, 38, 59–63.

    Google Scholar 

  • Baird-Parker, A.C. (1980). Organic acids. In Microbial Ecology of Foods, ed. J.H. Silliker. Academic Press, New York, USA, pp. 126–35.

    Google Scholar 

  • Batish, U.K., Grover, S. & Lal, R. (1989). Screening lactic starter cultures for antifungal activity. Cultured Dairy Products Journal, 24, 23–5.

    Google Scholar 

  • Beck, T. (1978). The microbiology of silage fermentation. In Fermentation of Silage-A Review, ed. M.E. McCullough. National Feed Ingredients Association, West Des Moines, IA, USA, pp. 61–115.

    Google Scholar 

  • Berger, J.C.A., Fonteot, J.P., Kornegay, E.T. & Webb, K.E. (1980). Ensiling swine waste with different proportions of grass hay or corn grain. In Livestock Waste-A Renewable Resource (Proceedings, International Symposium). American Society of Agricultural Engineers. St. Joseph, MI, USA, pp. 19–21.

    Google Scholar 

  • Cassio, F., Leao, C. & Uden, N., van (1987). Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cervisiae. Applied and Environmental Microbiology, 53, 507–13.

    Google Scholar 

  • Clark, D.S. & Takâcs, J. (1980). Gases as preservatives. In Microbial Ecology of Foods, ed. J.H. Silliker. Academic Press, London, UK, pp. 170–80.

    Google Scholar 

  • Condon, S. (1987). Responses of lactic acid bacteria to oxygen. FEMS Microbi-ological Review,46, 269–80.

    Article  Google Scholar 

  • Cooke, R.D., Twiddy, D.R. & Reilly, P.J.A. (1987). Lactic acid fermentation as a low-cost means of food preservation in tropical countries. FEMS Microbiological Review, 46, 369–79.

    Article  Google Scholar 

  • Daeschel, M.A. (1989). Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology, 43, 164–7.

    Google Scholar 

  • Disney, G., Tatterson, I.N. & Olley, J. (1977). Recent developments in fish silage. In Proceedings of the Conference on the Handling,Processing and Marketing of Tropical Fish. Tropical Products Institute, London, UK, pp. 231–40.

    Google Scholar 

  • Fleming, H.P. & McFeeters, R.F. (1981). Use of microbial cultures: Vegetable products. Food Technology, 5, 84–8.

    Google Scholar 

  • Frazier, W.C. & Westhoff, D.C. (1988). Food Microbiology. McGraw-Hill, London, UK.

    Google Scholar 

  • Gottschalk, G. (1986). Lactate fermentation. In Bacterial Metabolism (2nd ed). Springer-Verlag, Berlin, Germany, pp. 214–24.

    Chapter  Google Scholar 

  • Gottschalk, G., Andreesen, J.J. & Hippe, H. (1983). In The Prokaryotes, ed. M.P. Starr, H. Stolp, H.G. Trüper, A. Balows & H.E. Schlegel. Springer Verlag, New York, USA.

    Google Scholar 

  • Hassan, T.E. & Heath, J.L. (1986). Biological fermentation of fish waste for potential use in animal and poultry feeds. Agricultural Wastes, 15, 1–15.

    Article  Google Scholar 

  • Hrubant, G.R. & Rhodes, R.A. (1989). Death of fecal coliforms and Mycobacterium paraturberculosis during fermentation of corn and feedlot waste. Biological Wastes, 29, 139–52.

    Article  Google Scholar 

  • Hurst, A. & Collin-Thomsson, D.L. (1979). Food as a bacterial habitat. In Advances in Microbial Ecology, ed. M. Alexander. Plenum Press, New York, USA, pp. 79–134.

    Google Scholar 

  • Ingram, M., Ottoway, F.J.H. & Coppock, J.B.M. (1956). The preservative action of acid substances in food. Chemistry and Industry, 42, 1154–65.

    Google Scholar 

  • Jakhmola, R.C., Kamra, D.N., Sing, R. & Pathak, N.N. (1984). Fermentation of cattle waste for animal feeding. Agricultural Wastes, 10, 229–37.

    Article  Google Scholar 

  • Jakhmola, R.C., Singh, R., Jindal, S.K. & Kamra, D.N. (1986). Buffalo dung wastelage as sole or partial source of nutrients to sheep. Agricultural Wastes, 17, 91–8.

    Article  Google Scholar 

  • Johnsson, A. (1991). Growth of C. tyrobutyricum during fermentation and aerobic deterioration of grass silage. Journal of the Science of Food and Agriculture, 54, 557–68.

    Article  Google Scholar 

  • Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–24.

    Article  Google Scholar 

  • Kandler, O. & Weiss, N. (1986). Genus Lactobacillus. In Bergey’s Manual of Systematic Bacteriology (Vol. 2), ed. P.H.A. Sneath. Williams and Wilkins Co., Baltimore, MD, USA, pp. 1208–34.

    Google Scholar 

  • Kilara, A. & Treki, N. (1984). Use of lactobacilli in foods-Unique benefits. Developments in Industrial Microbiology, 25, 125–38.

    Google Scholar 

  • Klaenhammer, T.R. (1988). Bacteriocins of lactic acid bacteria. Biochemie, 70, 337–49.

    Article  Google Scholar 

  • Knight, E.F., McCaskey, T.A., Anthony, W.B. & Walters, J.L. (1977). Microbial population changes and fermentation characteristics of ensiled bovine manure blended rations. Journal of Dairy Science, 60, 416–23.

    Article  Google Scholar 

  • Lacey, J. (1975). Potential hazards to animal and man from microorganisms in fodder and grain. Transactions of the British Mycological Society, 65, 171–84.

    Article  Google Scholar 

  • Lacey, J. (1980). The microflora of grain dust. In Occupational Pulmonary Disease-Focus on Grain Dust and Health, ed. J. Dosman & D. Colton. Academic Press, New York, USA, pp. 417–40.

    Google Scholar 

  • Lassén, T.M., Hillemann, G. & Fors, F. (1990a). Fisk och slaktavfall konserverade med mjölksyrabakterier och enzympreparaten Pelzyme och Marilzil i foder till pälsdjur. NJF Seminarium, 185, (in Swedish).

    Google Scholar 

  • Lassén, T.M., Hildén, A., & Hildén, B.H. (1990b). Praktisk tillämpning av erfarenheter fran försök med biologiskt konserverade ensilage i foder till mink och räv. NJF Seminarium, 185, (in Swedish).

    Google Scholar 

  • Le Dividish, J., Seve, B. & Geoffroy, F. (1976). Banana silage in animal feeding. Annales Zootechnology, 25, 313–23.

    Article  Google Scholar 

  • Lindgren, S.E. & Clevström, G. (1978). Antibacterial activity of lactic acid bacteria 1 and 2. Swedish Journal of Agricultural Research,8, 61–73.

    Google Scholar 

  • Lindgren, S.E. & Pleje, M. (1983). Silage fermentation of fish or fish waste products with lactic acid bacteria. Journal of Food and Agriculture, 34, 1057–67.

    Article  Google Scholar 

  • Lindgren, S.E. & Refai, O. (1984). Amylolytic lactic acid bacteria in fish silage. Journal of Applied Bacteriology, 57, 221–8.

    Google Scholar 

  • Lindgren, S. & Dobrogosz, W. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiological Reviews, 87, 149–64.

    Article  Google Scholar 

  • Lindgren, S., Pettersson, K., Kaspersson, A., Jonsson, A. & Lingvall, P. (1985). Microbial dynamics during aerobic deterioration of silages. Journal of Food and Agriculture, 36, 765–74.

    Article  Google Scholar 

  • Lindgren, S., Bromander, A. & Petterson, K. (1988). Evaluation of silage additives using scale-model silos. Swedish Journal of Agricultural Research,18, 41–9.

    Google Scholar 

  • Lucas, D.M., Fontenot, J.P. & Webb Jr, K.E. (1975). Composition and digestibility of cattle fecal waste. Journal of Animal Science, 41, 1480–6.

    Google Scholar 

  • Mattick, A.T.R. & Hirst, A. (1947). Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet, 2, 5–7.

    Article  Google Scholar 

  • McBride, J.R., Idler, D.R. & MacLeod, R.D. (1961). The liquefaction of British Columbia herring by ensilage, proteolytic enzymes and acid hydrolysis. Journal Fisheries Research Board of Canada, 18, 93–112.

    Article  Google Scholar 

  • McCaskey, T.A. & Anthony, W.B. (1979). Human and animal health aspects of feeding livestock excreta. Journal of Animal Science, 48, 163–77.

    Google Scholar 

  • McCaskey, T.A. & Shehane, J.E. (1980). Lactic acid fermentation reduces risk of mycobacteria transmission by bovine manure-formulated rations. In Live Stock Waste-A Renewable Resource (Proceedings, International Symposium). American Society of Agricultural Engineering, St. Joseph, MI, USA, pp. 73–6.

    Google Scholar 

  • McCaskey, T.A. & Wang, Y.D. (1985). Evaluation of the lactic acid fermentation process for elimination of mycobacteria from wastelage. Journal of Dairy Science, 68, 1401–8.

    Article  Google Scholar 

  • McDonald, P., Henderson, A.R. & Heron, S.J.E. (1991). The Biochemistry of Silage. Chalcombe Publications, Marlow, Buckinghamshire, UK.

    Google Scholar 

  • Moon, N.J. (1981a). Development of microbial populations in fermented wastes from frozen vegetable processing. Journal of Food Protection, 44, 288–93.

    Google Scholar 

  • Moon, N.J. (1981b). Effect of inoculation of vegetable processing wastes with Lactobacillus plantarum on silage fermentation. Journal of the Science of Food and Agriculture,32, 675–83.

    Article  Google Scholar 

  • Moon, N.J. (1983). Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. Journal of Applied Bacteriology, 55, 453–60.

    Google Scholar 

  • Moon, N.J. & Ely, L.O. (1979). Identification and properties of yeasts associated with aerobic deterioration of wheat and alfalfa silages. Mycopathologia, 69, 153–6.

    Article  Google Scholar 

  • Morrison, D.C. & Ryan, J.L. (1987). Endotoxins and disease mechanisms. Annual Review of Medicine, 38, 417–32.

    Article  Google Scholar 

  • Nash, M.J. (1985). Crop Conservation and Storage. Pergamon Press. Oxford, UK.

    Google Scholar 

  • Nilsson, R. & Rydin, C. (1965). A new method of ensiling foodstuffs and feedstuffs of vegetable and animal origin. Enzymologia, 11, 126–42.

    Google Scholar 

  • Owens, J.D. & Mendoza, L.S. (1985). Enzyamtically hydrolyzed and bacterially fermented fishery products. Journal of Food Tichnology, 20, 273–93.

    Article  Google Scholar 

  • Pederson, C.S. (1979). Microbiology of Food Fermentation (2nd ed), AVI Publishing Co., Westport, CT, pp. 153–209.

    Google Scholar 

  • Peppler, H.J. (1983). Fermented feeds and feed supplements. In Biotechnology, ed. G. Reed. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Prentice, G.A. & Neaves, P. (1986). The role of microorganisms in the dairy industry. Journal of Applied Bacteriology Symposium Supplement, 43S–57S.

    Google Scholar 

  • Raa, J. & Gildberg, A. (1976). Autolysis and proteolytic activity of cod viscera. Journal of Food Technology, 11, 619–28.

    Article  Google Scholar 

  • Rogers, L.A. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. Journal of Bacteriology, 16, 321.

    Google Scholar 

  • Rubin, H.E. (1978). Toxicological model for a two-acid system. Applied and Environmental Microbiology, 36, 623–4.

    Google Scholar 

  • Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P. & Michiels, F. (1989). Integration and expression of a-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Applied and Environmental Microbiology, 55, 2130–7.

    Google Scholar 

  • Schleifer, K.H. (1986). Gram-positive cocci. In Bergey’s Manual of Systematic Bacteriology (Vol. 2), ed. P.H.A. Sneath. Williams and Wilkins Co., Baltimore, MD, USA, pp. 999–1103.

    Google Scholar 

  • Schröder, K., Clausen, E., Sandberg, A.M. & Raa, J. (1979). Psychrotrophic Lactobacillus plantarum from fish and its ability to produce antibiotic substances. In Advances in Fish Science and Technology, ed. J.J. Conell. Fishing, News Books, London, UK, pp. 480–3.

    Google Scholar 

  • Seale, D.R. (1986). Bacterial inoculants as silage additives. Journal of Applied Bacteriology Symposium Supplement, 9S–26S.

    Google Scholar 

  • Seale, D.R. (1987). Bacteria and enzymes as products to improve silage preservation. In Developments in Silage, ed. J.M. Wilkinson & B.A. Stark. Chalcombe Publications, Marlow, Buckinghamshire, UK.

    Google Scholar 

  • Setälä, J. (1988–89). Enzymes in grass silage production. Food Biotechnology, 2, 211–25.

    Article  Google Scholar 

  • Sharpe, M.E. (1981). The genus Lactobacillus. In The Prokaryotes, ed. M. P. Starr, H. Stolp, H.G. Truper, A. Balows & H.G. Schlegel. Springer-Verlag KG, Berlin, Germany, pp. 1635–9.

    Google Scholar 

  • Skrede, A. & Nes, I.F. (1988). Slaughterhouse by-products preserved by Lactobacillus plantarum fermentation as feed for mink and foxes. Animal Feed Science and Technology, 20, 287–98.

    Article  Google Scholar 

  • Smulders, F.J.M., Barendsen, P., Logtestijn, J.G., van, Mossel, D.A.A. & Marel, G.M., Van Der (1986). Review: Lactic acid: considerations in favour of its acceptance as a meat decontaminant. Journal of Food Technology, 21, 419–36.

    Article  Google Scholar 

  • Speck, M.L. (1981). Use of microbial cultures: Dairy products. Food Technology, 35, 71–3.

    Google Scholar 

  • Stanton, W.R. & Quee Lan Yeoh (1977). The bacteriology of fresh and spoiling fish and the biochemical changes induced by bacterial action. In Proceedings of the Conference on Handling, Processing and Marketing of Tropical Fish. Tropical Products Institute, London, UK, pp. 277–82.

    Google Scholar 

  • Steinkraus, K.H. (1982). Fermented foods and beverages: the role of mixed cultures. In Microbial Interactions and Communities, ed. A.T. Bull & J.H. Sluter. Academic Press, London, UK, pp. 407–42.

    Google Scholar 

  • Tag, J.R., Dajam, A.S. & Wannamaker, L.W. (1976). Bacteriocins of Gram-positive bacteria. Bacteriology Reviews, 40, 722–56.

    Google Scholar 

  • Tatterson, J.N. & Winsor, M.L. (1974). Fish Silage. Journal of Science of Food and Agriculture, 25, 369–79.

    Article  Google Scholar 

  • Tauson, A.-H. (1985). Effects of lactic acid bacteria as feed additive on reproductive performance and early kit growth rate in mink and blue foxes. Acta Agriculturae Scandinavica, 34, 485–506.

    Article  Google Scholar 

  • Twiddy, D.R., Cross, S.J. & Cooke, R.D. (1987). Parameters involved in the production of lactic acid preserved fish-starchy substrate combinations. Indian Journal of Food Science and Technology, 22, 115–21.

    Article  Google Scholar 

  • Warth, A.P. (1977). Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. Journal of Applied Bacteriology, 43, 215–30.

    Google Scholar 

  • Watson, S.J. & Nash, M.J. (1960). The Conservation of Grass and Forage Crops. Oliver & Boyd, London, UK.

    Google Scholar 

  • Wirahadikusumah, S. (1968). Preventing Clostridium botulinum type E poisoning and rancidity by silage fermentation. Lantbrukshögskolans Annaler, 34, 551–689.

    Google Scholar 

  • Woolford, M.K. (1975). Microbial screening of the straight chain fatty acids (C1—C12) as potential silage additives. Journal of the Science of Food and Agriculture, 26, 219–28.

    Article  Google Scholar 

  • Woolford, M.K. (1984). The Silage Fermentation. Marcel Dekker, New York, USA.

    Google Scholar 

  • Woolford, M.K. (1990). The detrimental effects of air on silage. A review. Applied Bacteriology, 68, 101–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Lindgren, S. (1992). Storage of Waste Products for Animal Feed. In: Wood, B.J.B. (eds) The Lactic Acid Bacteria Volume 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3522-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3522-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-85166-720-8

  • Online ISBN: 978-1-4615-3522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics