Skip to main content

Pathological diagnosis of osteosarcoma: The validity of the subclassification and some new diagnostic approaches using immunohistochemistry

  • Chapter
Osteosarcoma in Adolescents and Young Adults: New Developments and Controversies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 62))

Abstract

Osteosarcoma of bone is a disease with considerable histologic and anatomic heterogeneity affecting the biological behavior of the tumor. On the basis of clinical features, anatomic location, histologic subtype, cytologic grading, and biological behavior, Dahlin and Unni [1] subclassified osteosarcoma into a “conventional” type and 11 important recognizable varieties, a system that has been generally utilized over the last 15 years. These days, however, our knowledge of osteosarcoma has greatly increased, compelling us to modify the original implications of those entities and to add a few novel varieties. Moreover, estimation of biological behavior is another important problem that should be settled by pathologists. Thus far, we have found no effective indicator other than cytological grading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahlin DC, Unni KK. Osteosarcoma of bone and its important recognizable varieties. Am J Surg Pathol 1:61–72, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Roessner A, Mellin W, Hiddemann W, et al. New cytomorphologic methods in the diagnosis of bone tumors: possibilities and limitations. Semin Diag Pathol 1:199–214, 1984.

    CAS  Google Scholar 

  3. Klein ML, Kenan S, Lewis MM. Osteosarcoma. Clinical and pathological considerations. Orthop Clin North Am 20:327–345, 1989.

    PubMed  CAS  Google Scholar 

  4. Dahlin DC, Unni KK. Bone Tumors. General Aspects and Data on 8542 cases, 4th ed. Charles C. Thomas, Springfield, IL, 1986.

    Google Scholar 

  5. Mirra JM (Ed.). Bone Tumors. Clinical, Radiologic, and Pathologic Correlations. Lea & Febiger, Philadelphia, 1989.

    Google Scholar 

  6. Raymond AK, Murphy GF, Rosenthal DI. Case report 425. Chondroblastic osteosarcoma: clear-cell variant of femur. Skelet Radiol 16:336–341, 1987.

    Article  CAS  Google Scholar 

  7. Matsuno T, Unni KK, McLeod RA, Dahlin DC. Telangiectatic osteogenic sarcoma. Cancer 38:2538–2547, 1976.

    Article  PubMed  CAS  Google Scholar 

  8. Huvos AG, Rosen G, Bretsky SS, Butler A. Telangiectatic osteogenic sarcoma: a clinicopathologic study of 124 patients. Cancer 49:1679–1689, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Rosen G, Huvos AG, Marcove R, Nirenberg A. Telangiectatic osteogenic sarcoma. Improved survival with combination chemotherapy. Clin Orthop Rel Res 207:164–173, 1986.

    Google Scholar 

  10. Sim FH, Unni KK, Beabout JW, Dahlin DC. Osteosarcoma with small cells simulating Ewing’s tumor. J Bone Joint Surg 61-A:207–215, 1979.

    Google Scholar 

  11. Bertoni F, Present D, Bacchini P, et al. The Istituto Rizzoli experience with small cell osteosarcoma. Cancer 64:2591–2599, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Ayala AG, Ro JY, Raymond AK, et al. Small cell osteosarcoma. A clinicopathologic study of 27 cases. Cancer 64:2162–2173, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Roessner A, Immenkamp M, Hiddemann W, et al. CAse report 331. Small cell osteosarcoma of the tibia with diffuse metastatic disease. Skelet Radiol 14:216–225, 1985.

    Article  CAS  Google Scholar 

  14. McCarthy EF, Matsuno T, Dorfman HD. Malignant fibrous histiocytoma of bone: a study of 35 cases. Hum Pathol 10:57–70, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Roessner A, Hobik HP, Grundmann E. Malignant fibrous histiocytoma of bone and osteosarcoma. A comparative light and electron microscopy study. Pathol Res Pract 164:385–401, 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Huvos AG, Heilwei IM, Bretsky SS. The pathology of malignant fibrous histiocytoma of bone: a study of 130 patients. Am J Surg Pathol 9:853–871, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Mirra JM. Bone Tumors: Diagnosis and Treatment. Philadelphia, J.B. Lippincott, 198019801980.

    Google Scholar 

  18. Yunis EJ, Barnes L. The histologic diversity of osteosarcoma. Pathol Annu (Part 1):121–141, 1986.

    Google Scholar 

  19. Huvos AG. Osteogenic sarcoma of bones and soft tissues in older persons. Cancer 57:1442–1449, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Ballance WA, Mendelsohn G, Carter JR, et al. Osteogenic sarcoma. Malignant fibrous histiocytoma subtype. Cancer 62:763–771, 1988.

    Article  PubMed  Google Scholar 

  21. Roessner A, Zwaldo G, Vollmer E, et al. Biologic characterization of bone tumors. IX. Occurrence of macrophages. Pathol Res Pract 182:336–343, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Unni KK, Dahlin DC, McLeod RA, Pritchard DJ. Intraosseous well-differentiated osteosarcoma. Cancer 40:1337–1347, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Kurt AM, Unni KK, McLeod RA, Pritchard DJ. Low-grade intraosseous osteosarcoma. Cancer 65:1418–1428, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Schajowicz F, McGuire MH, Araujo ES, et al. Osteosarcomas arising on the surfaces of long bones. J Bone Joint Surg 70-A 555–564, 1988.

    Google Scholar 

  25. Unni KK. Osteosarcoma of bone. In: Bone Tumors. Unni KK, Ed., Churchill Livingstone, New York, 1988, p 107–133.

    Google Scholar 

  26. Broders AC. The microscopic grading of cancer. In: Treatment of Cancer and Allied Diseases, Vol 1. Pack GT, Livingston EM, Eds. Paul B. Hoeber, New York, 1940, pp 19–41.

    Google Scholar 

  27. Ahuja SC, Villacin AB, Smith J, et al. Juxtacortical (parosteal) osteosarcoma. Histological grading and prognosis. J Bone Joint Surg 59A:632–642, 1977.

    Google Scholar 

  28. Campanacci M, Picci P, Gherlinzoni F, et al. Parosteal osteosarcoma. J Bone Joint Surg 66B:313–321, 1984.

    Google Scholar 

  29. Unni KK, Dahlin DC, Beabout JW, Ivins JC. Parosteal osteogenic sarcoma. Cancer 37:2466–2475, 1976.

    Article  PubMed  CAS  Google Scholar 

  30. Wold LE, Unni KK, Beabout JW, et al. Dedifferentiated parosteal osteosarcoma. J Bone Joint Surg 66A:53–59, 1984.

    Google Scholar 

  31. Bertoni F, Present D, Hudson T, Enneking WF. The meaning of radiolucencies in parosteal osteosarcoma. J Bone Joint Surg 67A:901–910, 1985.

    Google Scholar 

  32. Ayala A, Carrasco H, Benjamin R, Murray J. Parosteal osteosarcoma vs. dedifferentiated: preoperative identification. Lab Invest 54:53A, 1986.

    Google Scholar 

  33. Unni KK, Dahlin DC, Beabout JW. Periosteal osteogenic sarcoma. Cancer 37:2476–2485, 1976.

    Article  PubMed  CAS  Google Scholar 

  34. Schajowicz F. Juxtacortical chondrosarcoma. J Bone Joint Surg 59B:473–480, 1977.

    Google Scholar 

  35. Bertoni F, Boriani S, Laus M, Campanacci M. Periosteal chondrosarcoma and periosteal osteosarcoma. Two distinct entities. J Bone Joint Surg 64B:370–376, 1982.

    Google Scholar 

  36. Hall RB, Robinson LH, Malawar MM, Dunham WK. Periosteal osteosarcoma. Cancer 55:165–171, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Wold LE, Unni KK, Beabout JW, Pritchard DJ. High-grade surface osteosarcomas. Am J Surg Pathol 8:181–186, 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Voshiki S. A simple histological method for identification of osteoid matrix in decalcified bone. Stain Technol 48:233–238, 1973.

    Google Scholar 

  39. Junqueira LC, Figueiredo MTA, Torloni H, Montes GS. Differential histologic diagnosis of osteoid. A study on human osteosarcoma collagen by the histochemical picrosirius-polarization method. J Pathol 148:189–196, 1986.

    Article  PubMed  CAS  Google Scholar 

  40. Burgeson RE. New collagens, new concepts. Annu Rev Cell Biol 4:551–577, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Butler WT. Mineralized tissues: an overview. Methods Enzymol 145:255–261, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Fisher LW, Hawkins GR, Tuross N, Termine JD. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262:9702–9708, 1987.

    PubMed  CAS  Google Scholar 

  43. Price PA. Gla-containing proteins of bone. Connect Tissue Res 21:51–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Miller EJ, Gay S. The collagens: an overview and update. Methods Enzymol 144:3–41, 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Gordon MK, Gerecke DR, Olsen BR. Type XII collagen: distinct extracellular matrix component discovered by c-DNA cloning. Proc Natl Acad Sci USA 84:6040–6044, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Sandberg M, Tamminen M, Hirvonen H, et al. Expression of m-RNAs coding for α 1 chain of type XIII collagen in human fetal tissues: comparison with expression of mRNAs for collagen types I, II, and III. J Cell Biol 109:1371–1379, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Miller EJ. Recent information on the chemistry of the collagens. In: Proceedings of 2nd International Conference on the Biochemistry and Biology of Mineralized Tissues. Ebsco Media, Birmingham, Alabama, 1985, 80–93.

    Google Scholar 

  48. von der Mark K. von der Mark H. The role of three genetically distinct collagen types in enchondral ossification and calcification of cartilage. J Bone Joint Surg 59:458–464, 1977.

    Google Scholar 

  49. Remberger K, Gay. Immunohistochemical demonstration of different collagen types in the normal epiphyseal plate and benign and malignant tumors of bone and cartilage. Z Krebsforsch 90:95–106, 1977.

    Article  CAS  Google Scholar 

  50. Reddi AH, Gay R, Gay S, Miller EJ. Transition in collagen types during matrix induced cartilage, bone, and bone marrow formation. Proc Natl Acad Sci USA 74:5589–5592, 1977.

    Article  PubMed  CAS  Google Scholar 

  51. Wright GM, Leblond CP. Immunohistochemical localization of procollagens. III. Type I procollagen antigenicity in osteoblasts and prebone(osteoid). J Histochem Cytochem 29:791–804, 1981.

    Article  PubMed  CAS  Google Scholar 

  52. Page M, Hogg J, Ashhurst DE. The effect on mechanical stability on the macromolecules of connective tissue matrices produced during fracture healing. I. The collagens. Histochem J 18:251–265, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Becker J, Schuppan D, Benzian H, et al. Immunohistochemical distribution of collagen type IV, V, and VI and of pro-collagens types I and III in human alveolar bone and dentine. J Histochem Cytochem 34:1417–1429, 1986.

    Article  PubMed  CAS  Google Scholar 

  54. Ashhurst DE. Collagen synthesized by healing fractures. Clin Orthop Rel Res 255:273–283, 1990.

    Google Scholar 

  55. Ueda Y, Nakanishi I. Immunohistochemical and biochemical studies on the collagenous proteins of human osteosarcomas. Virchows Archiv B Cell Pathol 58:79–88, 1989.

    Article  CAS  Google Scholar 

  56. Roessner A, Voss B, Rauterberg J, et al. Biological characterization of human bone tumors. II. Distribution of different collagen types in osteosarcoma—A combined histologic, immunofluorescence and electron microscopic study. J Cancer Res Clin Oncol 106:234–239, 1983.

    Article  PubMed  CAS  Google Scholar 

  57. Ueda Y, Oda Y, Tsuchiya H, et al. Immunohistological study on collagenous proteins of benign and malignant human cartilaginous tumors of bone. Virchows Archiv A Pathol Anat 417:291–297, 1990.

    Article  CAS  Google Scholar 

  58. Roessner A, Hobik HP, Immenkamp M, Grundmann E. Ultrastructure of telangiectatic osteosarcoma. J Cancer Res Clin Oncol 95:197–207, 1979.

    Article  PubMed  CAS  Google Scholar 

  59. Grundmann E, Roessner A, Immenkamp M. Tumor cell types in osteosarcoma as revealed by electron microscopy. Implications for histogenesis and subclassification. Virchows Archiv B Cell Pathol 36:257–273, 1981.

    Article  CAS  Google Scholar 

  60. Termine JD, Kleinman HK, Whitson SW, et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105, 1981.

    Article  PubMed  CAS  Google Scholar 

  61. Price PA, Otsuka AS, Poser JW, et al. Characterization of γ-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451, 1976.

    Article  PubMed  CAS  Google Scholar 

  62. Fisher LW, Whitson SW, Avioli LV, Termine JD. Matrix sialoprotein of developing bone. J Biol Chem 258:12723–12727, 1983.

    PubMed  CAS  Google Scholar 

  63. Fisher LW, Termine JD, Dejter SW Jr., et al. Proteoglycans of developing bone. J Biol Chem 258:6588–6594, 1983.

    PubMed  CAS  Google Scholar 

  64. Nakagawa M, Urist MR. Chondrogenesis in tissue cultures of muscle under the influence of a diffusible component of bone matrix. Proc Soc Exp Biol Med 154:568–572, 1977.

    PubMed  CAS  Google Scholar 

  65. Gehron-Robey P, Fisher LW, Stubbs JT, Termine JD. Biosynthesis of osteonectin and a small proteoglycan(PG-II) by connective tissue cells in vitro. In: Development and Diseases of Cartilage and Bone Matrix, Alan R. Liss, New York, 1987, 125–155.

    Google Scholar 

  66. Jundt G, Berghäuser KH, Termine JD, Schulz A. Osteonectin—a differential marker of bone cells. Cell Tissue Res 248:409–415, 1987.

    Article  PubMed  CAS  Google Scholar 

  67. Mason IJ, Murphy M, Munke U, et al. Developmental and transformation-sensitive expression of the SPARC gene on mouse chromosome II. EMBO J 5:1831–1837, 1986.

    PubMed  CAS  Google Scholar 

  68. Mann K, Deutzmann R, Paulsson M, Timpl R. Solubilization of protein BM-40 from a basement membrane tumor with chelating agents and evidence for its identity with osteonectin and SPARC. FEBS Lett 218:167–172, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Sage H, Johnson C, Bornstein P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J Biol Chem 259:3993–4007, 1984.

    PubMed  CAS  Google Scholar 

  70. Stenner DD, Tracy RP, Riggs BL, Mann KG. Human platelets contain and secret osteonectin, a major protein of mineralized bone. Proc Natl Acad Sci USA 83:6892–6896, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Tracy RP, Shull S, Riggs BL, Mann KG. The osteonectin family of proteins. Int J Biochem 20:653–660, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Schulz A, Jundt G, Berghäuser KH, et al. Immunohistochemical study of osteonectin in various types of osteosarcoma. Am J Pathol 132:233–238, 1988.

    PubMed  CAS  Google Scholar 

  73. Jundt G, Schulz A, Berghäuser KH, et al. Immunocytochemical identification of osteogenic bone tumors by osteonectin antibodies. Virchows Archiv A Pathol Anat 414:345–353, 1989.

    Article  CAS  Google Scholar 

  74. Bosse A, Vollmer E, Böcker W, et al. The impact of osteonectin for differential diagnosis of bone tumors. An immunohistochemical approach. Pathol Res Pract 186:651–657, 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Bianco P, Silverstrini G, Termine JD, Bonnuci E. Immunohistochemical localization of osteonectin in developing human and calf bone using monoclonal antibodies. Cal Tissue Int 43:155–161, 1988.

    Article  CAS  Google Scholar 

  76. Ohta T, Mori M, Ogawa K, et al. Immunocytochemical localization of BGP in human bones in various developmental stages and pathological conditions. Virchows Archiv A Pathol Anat 415:459–466, 1989.

    Article  CAS  Google Scholar 

  77. Vermeulen AHM, Vermeer C, Bosman FT. Histochemical detection of osteocalcin in normal and pathological human bone. J Histochem Cytochem 37:1503–1508, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Ushigome S, Shimoda T, Fukunaga M, et al. Immunocytochemical aspects of the differential diagnosis of osteosarcoma and malignant fibrous histiocytoma. Surg Pathol 1:347–357, 1988.

    Google Scholar 

  79. Lianjia Y, Yan J. Immunohistochemical observations on bone morphogenetic protein in normal and abnormal conditions. Clin Orthop Rel Res 257:249–256, 1989.

    Google Scholar 

  80. Bosse A, Roessner A, Vollmer E, et al. Bone morphogenetic protein (BMP) in Osteosarcomen—eine immunohistologische Studie. Verh Dtsch Ges Path 73:632, 1989.

    Google Scholar 

  81. Yoshikawa H, Takaoka K, Masuhara K, et al. Prognostic significance of bone morphogenetic activity in osteosarcoma tissue. Cancer 61:569–573, 1988.

    Article  PubMed  CAS  Google Scholar 

  82. Embleton MJ, Gunn B, Byers VS, Baldwin RW. Antitumor reactions of monoclonal antibody against a human osteogenic sarcoma cell line. Br J Cancer 43:582–587, 1981.

    Article  PubMed  CAS  Google Scholar 

  83. Hosoi S, Nakamura T, Higashi S, et al. Detection of human osteosarcoma-associated antigens by monoclonal antibodies. Cancer Res 42:654–659, 1982.

    PubMed  CAS  Google Scholar 

  84. Bruland OS, Fodstad O, Funderud S, Pihl A. New monoclonal antibodies specific for human sarcomas. Int J Cancer 37:27–31, 1986.

    Article  Google Scholar 

  85. Tsang KY, Warren RO, Bishop L, et al. Monoclonal antibodies to human osteosarcoma-associated antigen(s). J Natl Cancer Inst 77:1175–1180, 1986.

    PubMed  CAS  Google Scholar 

  86. Lizoñovà A, Blahovà Š, Bizik J, Gròfòvà M. Monoclonal antibody to a human osteogenic sarcoma cell line. Arch Geschwulstforsch 58:151–157, 1988.

    PubMed  Google Scholar 

  87. Wada T, Ueda T, Ishii S, et al. Monoclonal antibodies that detect different antigenic determinants of the same human osteosarcoma-associated antigen. Cancer Res 48:2273–2279, 1988.

    PubMed  CAS  Google Scholar 

  88. Tsai CC, McGuire MH, Mellitt RJ, et al. Monoclonal antibody to human osteosarcoma: a novel Mr26000 protein recognized by murine hybridoma TMMR-2. Cancer Res 50:152–158, 1990.

    PubMed  CAS  Google Scholar 

  89. Tanaka C, Yamamuro T, Masuda T, et al. Recognition of serum alkalin phosphatase by murine monoclonal antibodies against human osteosarcoma cells. Cancer Res 46:4853–4857, 1986.

    PubMed  CAS  Google Scholar 

  90. Gerdes J, Lembke H, Baisch H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715, 1984.

    PubMed  CAS  Google Scholar 

  91. Brown DC, Gatter KC. Monoclonal antibody Ki-67: its use in histopathology. Histopathology 17:489–503, 1990.

    Article  PubMed  CAS  Google Scholar 

  92. Vollmer E, Roessner A, Wuisman P, et al. The proliferation behavior of bone tumors investigated with the monoclonal antibody Ki-67. Curr Top Pathol 80:91–114, 1989.

    Article  PubMed  CAS  Google Scholar 

  93. Garcia RL, Coltrera MD, Gown AM. Analysis of proliferative grade using anti-PCNA/ cyclin monoclonal antibodies in fixed, embedded tissues. Am J Pathol 134:733–739, 1989.

    PubMed  CAS  Google Scholar 

  94. Hall PA, Levison DA, Woods AL, et al. Proliferating cell nuclear antigen(PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162:285–294, 1990.

    Article  PubMed  CAS  Google Scholar 

  95. Friend SH, Bernard R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646, 1987.

    Article  Google Scholar 

  96. Miller CS, Aslo A, Tsay C, et al. Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res 50:7950–7954, 1990.

    PubMed  CAS  Google Scholar 

  97. Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 9:1595–1602, 1990.

    PubMed  CAS  Google Scholar 

  98. Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. Int J Cancer 44:757–760, 1989.

    Article  PubMed  CAS  Google Scholar 

  99. Yamagata S, Tanaka R, Ito Y, Shimizu S. Gelatinase of murine metastatic tumor cells. Biochem Biophys Res Commun 158:228–231, 1989.

    Article  PubMed  CAS  Google Scholar 

  100. Monteagudo C, Merino MJ, San-Juan J, et al. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 136:585–592, 1990.

    PubMed  CAS  Google Scholar 

  101. Hynes RO. Integrins: a family of cell surface receptors. Cell 48:549–554, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ueda, Y., Roessner, A., Grundmann, E. (1993). Pathological diagnosis of osteosarcoma: The validity of the subclassification and some new diagnostic approaches using immunohistochemistry. In: Humphrey, G.B., Koops, H.S., Molenaar, W.M., Postma, A. (eds) Osteosarcoma in Adolescents and Young Adults: New Developments and Controversies. Cancer Treatment and Research, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3518-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3518-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6561-7

  • Online ISBN: 978-1-4615-3518-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics