Skip to main content

Changes in Cell Morphology, [Ca2+]i and pHi During Metabolic Inhibition in Isolated Myocytes of Diabetic Rats Using Dual-Loading of Fura-2 and BCECF

  • Chapter
Cardiovascular Disease in Diabetes

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 130))

  • 43 Accesses

Abstract

Diabetes Mellitus (DM) has been shown to be associated with heart failure in the absence of atherosclerosis (1,2), suggesting a diabetic cardiomyopathy (3,4). The mechanism of heart failure due to the diabetic cardiomyopathy remains to be elucidated. The small vessel disease (5) and the abnormalities of subcellular mechanisms such as myosin ATPase (6) and myosin isoenzymes (7), have been reported in DM myocardium. Recently, abnormalities of Ca2+ metabolism have been reported in DM myocardium, which showed decreased Ca2+-ATPase of sarcoplasmic reticulum (SR) (8,9) and sarcolemma (10). It has also been reported that the activity of Na+/Ca2+-exchange was lower in DM myocardium (11). Previous reports have suggested the possibility of the Ca2+ overload in diabetic cardiomyopathy (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB, Hjortland M and Castelli WP. Role of diabetes in congestive heart failure: The Framingham Study. Am J Cardiol 1974;34:29–34.

    Article  PubMed  CAS  Google Scholar 

  2. Regan TJ, Ettinger PO, Khan MI, Jesrani MU, Lyons MM, Oldewurtel HA and Weber M. Altered Myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Cir Res 1974;35:222–237.

    Article  CAS  Google Scholar 

  3. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR and Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977;60:885–899.

    Article  Google Scholar 

  4. Fein FS and Sonnenblick EH. Diabetic Cardiomyopathy. Prog Cardiovasc Disease 1985;27:255–270.

    Article  CAS  Google Scholar 

  5. Hamby RI, Zoneraich S and Shermann L. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  6. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH and Scheuer J. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 1981;49:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  7. Dillmann WH. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980;29:579–582.

    PubMed  CAS  Google Scholar 

  8. Penpargkul S, Fein FS, Sonnenblick EH, and Scheuer J. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 1981;93:303–309.

    Article  Google Scholar 

  9. Lopaschuk GD, Tahiliani AG, Vadlamudi RVSV, Katz S and McNeill JH. Cardiac sarcoplasmic reticulum function in insulin-or carnitine-treated diabetic rats. Am J Physiol 1983;245:H969–H976.

    PubMed  CAS  Google Scholar 

  10. Heyliger CE, Prakash A and McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 1987;252:H540–H544.

    PubMed  CAS  Google Scholar 

  11. Makino N, Dhalla KS, Elimban V and Dhalla NS. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 1987;253:E202–207.

    Google Scholar 

  12. Gwilt DJ, Petri M, Lewis PW, Nattrass M and Pentecost BL. Myocardial infarct size and mortality in diabetic patients. Br Heart J 1985;54:466–472.

    Article  PubMed  CAS  Google Scholar 

  13. Feuvray D, Idell-Wenger JA and Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979;44:322–329.

    Article  PubMed  CAS  Google Scholar 

  14. Nadeau A, Tancrede G, Jobidon C, D’sAmours C and Rousseau-Migneron S. Increased mortality rate in diabetic rats submitted to acute experimental myocardial infarction. Cardiovasc Res 1986;20:171–175.

    Article  PubMed  CAS  Google Scholar 

  15. Nayler WG and Daly MJ. Calcium and the injured cardiac myocytes. In: Physiology and Pathophysiology of the Heart, N Sperelakis (Ed.) Martinus Nijhoff Publishing, 1984;477–492.

    Google Scholar 

  16. Cobbold PH and Bourne PK. Aequorin measurements of free calcium in single heart cells. Nature 1984;312:444–446.

    Article  PubMed  CAS  Google Scholar 

  17. Allen DG and Orchard CH. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol (Lond) 1983;339:107–122.

    CAS  Google Scholar 

  18. Smith GL and Allen DG. Effects of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle. Circ Res 1988.62:1223–1236.

    Article  PubMed  CAS  Google Scholar 

  19. Jennings RB and Reimer KA. Lethal myocardial ischémie injury. Am J Pathol 1981;102:241–255.

    PubMed  CAS  Google Scholar 

  20. Neely JR and Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984;55:816–824.

    Article  PubMed  CAS  Google Scholar 

  21. Ellis D and Noireaud J. Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J Physiol (Lond) 1987;383:125–141.

    CAS  Google Scholar 

  22. Eisner DA, Nichols CG, O’sNeill SC, Smith GL and Valdeolmillos M. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol (Lond) 1989;411:393–418.

    PubMed  CAS  Google Scholar 

  23. Vaughan-Jones RD, Lederer WJ and Eisner DA. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. 1983;301:522–524.

    CAS  Google Scholar 

  24. Kim D, Cragoe Jr, EJ and Smith TW. Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells. Circ Res 1987;60:185–193.

    Article  PubMed  CAS  Google Scholar 

  25. Bers DM and Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pfluegers Arch 1982;393:171–178.

    Article  CAS  Google Scholar 

  26. Miyata H, Hayashi H, Suzuki S, Noda N, Kobayashi A, Fujiwake H, Hirano M and Yamazaki N. Dual loading of the fluorescent indicator fura-2 and 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) in isolated myocytes. Biochem Biophys Res Commun 1989;163:500–505.

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi H, Ponnambalam C, McDonald TF. Arrhythmic activity in reoxygenated guinea pig papillary muscles and ventricular cells. Circ Res 1987;61:124–133.

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Altschuld RA and Stokes BT. Quantisation of intracellular free calcium in single adult cardiomyocytes by fura-2 fluorescence microscopy: Calibration of fura-2 ratios. Biochem Biophys Res Commun 1987;147:120–126.

    Article  PubMed  CAS  Google Scholar 

  29. Grynkiewicz G, Poenie M and Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.

    PubMed  CAS  Google Scholar 

  30. Highsmith S, Bloebaum P and Snowdowne KW. Sarcoplasmic reticulum interacts with the Ca2+ indicator precursor fura-2-AM. Biochem Biophys Res Commum 1986;138:1153–1162.

    Article  CAS  Google Scholar 

  31. Scanlon M, Williams DA and Fay FS. A Ca2+-insensitive form of fura-2 associated with polymorphonuclear leukocytes. Assessment and accurate Ca2+ measurement. J Biol Chem 1987:262:6308–6312.

    PubMed  CAS  Google Scholar 

  32. Becker PB and Fay FS. Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol 1987;253:C613-C618.

    Google Scholar 

  33. Timmerman MP and Ashley CC. Fura-2 diffusion and its use as an indicator of transient free calcium changes in single striated muscle cells. FEBS Lett 1986;209:l-8.

    Google Scholar 

  34. Jacson CV, McGrath GM, Tahiliani AG, Vadlamudi RVS, and McNeill JH. A functional and ultrastructural analysis of experimental diabetic rat myocardium. Manifestation of a cardiomyopathy. Diabetes 1985;34:876–883.

    Article  Google Scholar 

  35. Horackova M and Murphy MG. Effects of chronic diabetes mellitus on the electrical and contractile activities, 45Ca2+ transport, fatty acid profiles and ultrastructure of isolated rat ventricular myocytes. Pflugers Arch 1988;411:564–572.

    Article  PubMed  CAS  Google Scholar 

  36. Bergh CH, Hjalmarson A, Sjogren KG and Jacobsson B. The effect of diabetes on phosphatidylinositol and calcium influx. Horm Metabol Res 1988;20:381–386.

    Article  CAS  Google Scholar 

  37. Gotzsche O. Decreased myocardial calcium uptake after isoproterenol in streptozotocin-induced diabetic rats. Studies in the in vitro perfused heart. Lab Invest 1983;48:156–161.

    PubMed  CAS  Google Scholar 

  38. Vadlamudi RVSV, Rodgers RL and McNeill JH. The effect of chronic alloxan and streptozotocin-induced diabetes on isolated rat heart performance. Can J Physiol Pharmacol 1982;60:902–911.

    Article  PubMed  CAS  Google Scholar 

  39. Vogel WM and Apstein CS. Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circ Res 1988;62:975–982.

    Article  PubMed  CAS  Google Scholar 

  40. Tani M and Neely JR. Hearts from diabetic rats are more resistant to in vivo ischemia: Possible role of altered Ca2+ metabolism. Circ Res 1988;62:931–940.

    Article  PubMed  CAS  Google Scholar 

  41. Miyata H, Hayashi H, Kobayashi A and Yamazaki N. Effects of strophanthidin on intracellular Ca2+ concentration and cellular morphology of guinea pig myocytes. Cardiovasc Res 1989;23:378–384.

    Article  PubMed  CAS  Google Scholar 

  42. Fein FS, Aronson RS, Nordin C, Miller-Green B and Sonnenblick EH. Altered myocardial response to ouabain in diabetic rats: Mechanism and electrophysiology. J Mol Cell Cardiol 1983;15:769–784.

    Article  PubMed  CAS  Google Scholar 

  43. Barry WH, Peeters GA, Rasmussen Jr CAF and Cunningham MJ. Role of changes in [Ca2+]i-in energy deprivation contracture. Circ Res 1987;61:726–734.

    Article  PubMed  CAS  Google Scholar 

  44. Allen DG, Morris PG, Orchard CH and Pirolo JS. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol (Lond) 1985;361:185–204.

    CAS  Google Scholar 

  45. Bhimji S, Godin DV and McNeili JH. Coronary artery ligation and reperfusion in rabbits made diabetic with alloxan. J Endocr 1987;112:43–49.

    Article  PubMed  CAS  Google Scholar 

  46. Carafoli E. The homeostasis of calcium in heart cells. J Mol Cell Cardiol 1985;17:203–212.

    Article  PubMed  CAS  Google Scholar 

  47. Morgan HE, Cadenas E, Regen DM and Park CR. Regulation of glucose uptake in muscle. 2. Rate-limitiing steps and effects of insulin and anoxia in heart muscle from diabetic rats. J Biol Chem 1961;236:262–268.

    PubMed  CAS  Google Scholar 

  48. Allen DG, Eisner DA, Morris PG, Porolo JS and Smith GL. Metabolic consequences of increasing intracellular calcium and force production in perfused ferret hearts. J Physiol (Lond) 1986;376:121–141.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hayashi, H. et al. (1992). Changes in Cell Morphology, [Ca2+]i and pHi During Metabolic Inhibition in Isolated Myocytes of Diabetic Rats Using Dual-Loading of Fura-2 and BCECF. In: Nagano, M., Mochizuki, S., Dhalla, N.S. (eds) Cardiovascular Disease in Diabetes. Developments in Cardiovascular Medicine, vol 130. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3512-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3512-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6558-7

  • Online ISBN: 978-1-4615-3512-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics