Skip to main content

Regulation of Polyamine Biosynthetic Activity and Homeostasis as a Novel Antiproliferative Strategy

  • Chapter
Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development

Part of the book series: Developments in Oncology ((DION,volume 68))

  • 98 Accesses

Abstract

Induction of polyamine biosynthetic activity and the subsequent increases in intracellular polyamine pools are well documented components of the proliferative response (reviewed in 1–3). Indeed, several lines of evidence clearly indicate that sustained polyamine biosynthesis is a critical component of cell growth and not simply a consequence of it (2,4). In many ways, the association of polyamines with cell growth and, in particular, the properties of the enzyme proteins themselves bear intriguing resemblance to proto-oncogenes and their encoded products. Two key biosynthetic enzymes, ornithine and S-adenosylmethionine decarboxylase (ODC and AdoMetDC, respectively), are extremely short-lived with half-lives of less than 1 hr, highly inducible and subject to sensitive regulatory control. Increases in their activities are invariably associated with the very early stages of cell growth and, somewhat less consistently, with tumor promotion (5,6). Although the most illustrative of the enzymes in this respect, ODC, has not been shown to have transforming capabilities, cells which overexpress the enzyme can be endowed with increased proliferative potential (7) and/or tissue invasiveness (8). Moreover, induction of the enzyme, like certain of the proto-oncogenes, is known to be critically important for initiating and sustaining cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janne J, Poso H, Raina, A: Polyamines in rapid growth and cancer. Biochim. Biophys. Acta 473:241–293, 1978.

    PubMed  CAS  Google Scholar 

  2. Porter CW, Sufrin JR: Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy: A review. Anticancer Res. 6:525–542, 1986.

    PubMed  CAS  Google Scholar 

  3. Pegg AE: Perspectives in Cancer Research. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48:759–774, 1988.

    PubMed  CAS  Google Scholar 

  4. Porter CW, Bergeron RJ: Enzyme regulation as an approach to interference with polyamine biosynthesis — an alternative to enzyme inhibition. In: Advances in Enzyme Regulation. G Weber (ed), Pergamon Press, New York and Oxford, Vol. 27, pp. 57–79, 1988.

    Google Scholar 

  5. Kingsnorth AN, King WWK, Diekema KA et al: Inhibition of ornithine decarboxylase with 2-difluoromethylornithine: Reduced incidence of dimethylhydrazine-induced colon tumors in mice. Cancer Res. 43:2545–2549, 1983.

    PubMed  CAS  Google Scholar 

  6. O'Brien TG, Simsiman RC, Boutwell RK: Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res. 35:1662–1670, 1975.

    PubMed  Google Scholar 

  7. Sistonen L, Keski-Oja J, Ulmanen I et al: Dose effects of transfected c-Ha-ras Val 12 oncogene in transformed cell clones. Exp. Cell Res. 168:518–530, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Alhonen-Hongisto L, Kallio A, Sinervirta R et al: Tumorigenicity, cell-surface glycoprotein changes and ornithine decarboxylase gene pattern in Ehrlich ascites-carcinoma cells. Biochem. J. 229:711–715, 1985.

    PubMed  CAS  Google Scholar 

  9. Mamont PS, Duchesne M-C, Grove J, Bey P: Antiproliferative properties of DL-α-difluoromethylornithine in cultured cells. A consequence of irreversible inhibition of ornithine decarboxylase. Biochem. Biophys. Res. Commun. 81:58–66, 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Schechter PJ, Barlow JLR, Sjoerdsma A: Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of eflornithine (DFMO) in cancer and protozoan diseases. In: Inhibition of Polyamine Metabolism. PP McCann, AE Pegg, A Sjoerdsma (eds), Academic Press, New York, pp. 345–364, 1987.

    Google Scholar 

  11. Porter CW, Bergeron RJ: Regulation of polyamine biosynthetic activity by spermidine and spermine analogs — a novel antiproliferative strategy. Progress in Polyamine Research. V Zappia, AE Pegg (eds), Plenum Press, New York, pp. 677–690, 1988.

    Chapter  Google Scholar 

  12. Verma AK: The enzyme-activated irreversible inhibitor of ornithine decarboxylase, DL-α-difluoromethylornithine: A chemopreventive agent. Preventative Medicine 18:646–652, 1989.

    Article  CAS  Google Scholar 

  13. Park MH, Cooper HL, Folk JE: Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc. Natl. Acad. Sci. U.S.A. 78:2869–2873, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Park MH, Liberato DJ, Yergey AL, Folk JE: The biosynthesis of hypusine (N'-[4-amino-2-hydroxybuty1]lysine). Alignment of the butylamine segment and source of the secondary amino nitrogen. J. Biol. Chem. 257:12123–12127, 1984.

    Google Scholar 

  15. Kramer DL, Khomutov RM, Bukin YV et al: Cellular characterization of a new irreversible inhibitor of S-adenosylmethionine decarboxylase and its use in determining the relative abilities of individual polyamines to sustain growth and viability of L1210 cells. Biochem. J. 259:325–331, 1989.

    PubMed  CAS  Google Scholar 

  16. Seiler N: Functions of polyamine acetylation. Can. J. Physiol. Pharmacol 65:2024–2035, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Seiler N, Dezeure F: Polyamine transport in mammalian cells. Int. J. Biochem. 22:211–218, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Alhonen-Hongisto L: Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture. Biochem. J. 190:747–754, 1980.

    PubMed  CAS  Google Scholar 

  19. Clark JL, Fuller JL: Regulation of ornithine decarboxylase in 3T3 cells by putrescine and spermidine: Indirect evidence for transiational control. Biochem. 14:4403–4409, 1975.

    Article  CAS  Google Scholar 

  20. Bergeron RJ: Synthesis and solution structure of microbial siderophores. Acc. Chem. Res. 19:105–113, 1986.

    Article  CAS  Google Scholar 

  21. Porter CW, Cavanaugh Jr. PF. Stolowich N et al: Biological properties of N4 — and N1, N8-spermidine derivatives in cultured L1210 leukemia cells. Cancer Res. 45:2050–2057, 1985.

    PubMed  CAS  Google Scholar 

  22. Porter CW, McManis J, Casero RA, Bergeron RJ: Relative abilities of bis(ethyl) derivatives of putrescine, spermidine and spermine to regulate polyamine biosynthesis and inhibit cell growth. Cancer Res. 47:2821–2825, 1987.

    PubMed  CAS  Google Scholar 

  23. Vertino PM, Bergeron RJ, Cavanaugh PF Jr, Porter CW: Structural determinants of spermidine-DNA interactions. Biopolymers 26:691–703, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Bergeron RJ, Neims AH, McManis JS et al: Synthetic polyamine analogues as antineoplastics. J. Med. Chem. 31:1183–1190, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Porter CW, Berger FG, Pegg AE et al: Regulation of ornithine decarboxylase activity by spermidine and the spermidine analog, N1,N8-bis(ethyl)-spermidine (BES). Biochem. J. 242:433–440, 1987.

    PubMed  CAS  Google Scholar 

  26. Porter CW, Pegg AE, Ganis B, et al: Combined regulation of ornithine an S-adenosylmethionine decarboxylases by spermine and the spermine analog, N1,N12-bis(ethyl)spermine. Biochemical Journal 268:207–212, 1990.

    PubMed  CAS  Google Scholar 

  27. Pegg AE, Madhubala R, Kameji T, Bergeron RJ: Control of ornithine decarboxylase activity in-difluoromethylornithine-resistant L1210 cells by polyamines and synthetic analogues. J. Biol. Chem. 263:11008–11014, 1988.

    PubMed  CAS  Google Scholar 

  28. Seiler N, Heby O: Regulation of cellular polyamines in mammals. Acta Biochim. Biophys. Hung. 23:1–36, 1986.

    Google Scholar 

  29. Rechsteiner M: Regulation of enzyme levels by proteolysis: The role of PEST regions. In: Advances in Enzyme Regulation. G Weber, (ed), Pergamon Press, Volume 27, pp. 135–151, 1988.

    Google Scholar 

  30. Casero R, Go B, Theiss HW et al: Cytotoxic response of the relatively difluoromethylornithine-resistant human lung tumor cell line NCI H157 to the polyamine analogue N1, N8-bislethyl)-spermidine. Cancer Res. 47:3964–3967, 1987.

    PubMed  CAS  Google Scholar 

  31. Casero RA Jr, Celano P, Ervin SJ et al: Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res. 49:3829–3833, 1989.

    PubMed  CAS  Google Scholar 

  32. Porter CW, Ganis B, Libby PR, Bergeron RJ: Correlations between polyamine analog-induced increases in spermidine/ spermine N1-acetyltransferase activity, polyamine pool depletion and growth inhibition in human melanoma cell lines. Cancer Res. (In Press).

    Google Scholar 

  33. Bolkenius FN, Seiler N: Functions of polyamine acetylation. Int. J. Biochem. 13:287–292, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Pegg AE, Matsui I, Seely JE et al: Formation of putrescine in rat liver. Med. Biol. 59:327–333, 1981.

    PubMed  CAS  Google Scholar 

  35. Mamont PS, Seiler N, Siat M et al: Metabolism of acetyl derivatives of polyamines in cultured polyamine-deficient rat hepatoma cells. Med. Biol. 59:347–353, 1981.

    PubMed  CAS  Google Scholar 

  36. Wallace HM: Polyamine catabolism in mammalian cells: Excretion and acetylation. Med. Sci. Res. 15:1437–1440, 1987.

    CAS  Google Scholar 

  37. Erwin BG, Pegg AE: Regulation of spermidine spermine N1-acetyltransferase in L6 cells by polyamines and related compounds. Biochem. J. 238:581–587, 1986.

    PubMed  CAS  Google Scholar 

  38. Libby PR, Bergeron RJ, Porter CW: Structure-function correlations of polyamine analog induced increases in spermidine/ spermine acetyltransferase activity. Biochem. Pharmacol. 38:1435–1442, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Libby PR, Henderson MA, Bergeron RJ, Porter CW: Major increases in spermidine/spermine-N'-acetyltransferase activity by spermine analogs and their relationship to polyamine depletion and growth inhibition of L1210 cells. Cancer Res. 49:6226–6231, 1989.

    PubMed  CAS  Google Scholar 

  40. Pegg AE, Wechter R, Pakala R, Bergeron RJ: Effect of N1, N12-bis(ethyl)spermine and related compounds on growth and polyamine acetylation, content, and excretion in human colon tumor cells. J. Biol. Chem. 264:11744–11749, 1989.

    PubMed  CAS  Google Scholar 

  41. Bergeron RJ, Hawthorne TR, Vinson JRT et al: Role of the methylene backbone in the antiproliferative activity of polyamine analogues on L1210 cells. Cancer Res. 49:2959–2964, 1989.

    PubMed  CAS  Google Scholar 

  42. Libby PR, Ganis B, Bergeron RJ. Porter CW: Characterization of human spermidine/spermine N1-acetyltransferase purified from cultured melanoma cells. Arch. Biochem. Biophys. (In Press).

    Google Scholar 

  43. Phillips MA, Coffino P, Wang CC: Cloning and sequencing of the ornithine decarboxylase gene from trvpanosoma brucei. J. Biol. Chem. 262:8721, 1987.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, C.W., Kramer, D.L., Bernacki, R.J., Bergeron, R.J. (1992). Regulation of Polyamine Biosynthetic Activity and Homeostasis as a Novel Antiproliferative Strategy. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development. Developments in Oncology, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3492-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3492-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6548-8

  • Online ISBN: 978-1-4615-3492-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics