Skip to main content

Self- and impurity diffusion processes in widegap II–VI materials

  • Chapter
Widegap II–VI Compounds for Opto-electronic Applications

Part of the book series: Electronic Materials Series ((EMAT,volume 1))

Abstract

A knowledge of the manner and ease with which atoms can migrate in a II–VI crystal lattice is of both fundamental and technological importance. At the fundamental level the diffusion process may involve non-defect or defect mechanisms: experimental diffusivities can help to identify the type of mechanism and underpin theoretical understanding of atom movements and defects. Diffusion is important in both material and device technology through control of non-stoichiometry, impurity doping and compositional interdiffusion (via gradients in alloy composition). The introduction during the past decade of epitaxial growth techniques and their use in the fabrication of low-dimensional structures has revealed a need for diffusion studies at much lower temperatures and in much smaller spatial regions compared with bulk materials (i.e. material ⩾1 µm in extent). It is easily seen for example that in a period of 103s (e.g. growth of a multiple quantum well (MQW)) diffusivities must be ⩽ 10-18 cm2 s-1 if diffusional spread should not exceed ~ 10 Å. Over a period of a year diffusivities must be ⩽ 10-22 cm2 s-1 to contain any spread to < 10 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharma, B.L. (1989) Defect Diffus. Forum, 64–65, 77.

    Google Scholar 

  2. Shaw, D. (1988) J. Cryst. Growth, 86, 778.

    CAS  Google Scholar 

  3. Shaw, D. (1973) In Atomic Diffusion in Semiconductors (ed. D. Shaw), Plenum, London, Chapter 1.

    Google Scholar 

  4. Dzhafarov, T.D. (1989) Phys. Status Solidi B, 155, 11.

    CAS  Google Scholar 

  5. Davis, G.D., Beck, W.A., Kilday, D.G., McKinley, J.T. and Margaritondo, G. (1989) J. Vac. Sci. Technol, A, 7, 870.

    CAS  Google Scholar 

  6. Raisanen, A., Peterman, D.J., Wall, A., Chang, S., Haugstad, G., Yu, X. and Franciosi, A. (1989) Solid State Commun., 71, 585.

    CAS  Google Scholar 

  7. Pandey, K.C. (1986) Phys. Rev. Lett., 57, 2287.

    CAS  Google Scholar 

  8. Pantelides, S.T. (1990) In Diffusion in Materials, NATO ASI Series Vol. 179 (eds A.L. Laskar, J.L. Boquet, G. Brébec and C. Monty), Kluwer, Dordrecht, p. 523.

    Google Scholar 

  9. Kröger, F.A. (1974) The Chemistry of Imperfect Crystals, 2nd edn, North-Holland, Amsterdam, p. 302.

    Google Scholar 

  10. Brouwer, G. (1954) Philips Res. Rep., 9, 366.

    CAS  Google Scholar 

  11. Shaw, D. (1984) J. Phys. C, 17, 4759.

    CAS  Google Scholar 

  12. Kukk, P.L. and Aarna, H.A. (1982) Phys. Status Solidi A, 69, K109.

    CAS  Google Scholar 

  13. Kukk, P.L., Aarna, H.A. and Voogne, M.P. (1981) Phys. Status Solidi A, 63, 389.

    CAS  Google Scholar 

  14. Selim, F.A. and Krxger, F.A. (1977) J. Electrochem. Soc., 124, 401.

    CAS  Google Scholar 

  15. Ido, T., Heurtel, A., Triboulet, R. and Marfaing, Y. (1987) J. Phys. Chem. Solids, 48, 781.

    CAS  Google Scholar 

  16. Boquet, J.L., Brébec, G. and Limoge, Y. (1983) In Physical Metallurgy, 3rd edn (eds R.W. Cahn and P. Haasen), North-Holland, Amsterdam, Chapter 8.

    Google Scholar 

  17. Tang, M.F.S. and Stevenson, D.A. (1990) J. Phys. Chem. Solids, 51, 563.

    CAS  Google Scholar 

  18. Dzhafarov, T.D. (1977) Phys. Stat. Sol. A, 42, 11.

    CAS  Google Scholar 

  19. Abdullaev, G.B. and Dzhafarov, T.D. (1987) Atomic Diffusion in Semiconductor Structures, Harwood, Chur, Switzerland. Chapter 2.

    Google Scholar 

  20. Queisser, H.J. (1961) J. Appl. Phys., 32, 1776.

    CAS  Google Scholar 

  21. Purdy, G.R. (1990) In Diffusion in Materials, NATO ASI Series Vol. 179 (eds A.L. Laskar, J.L. Boquet, G. Brébec and C. Monty), Kluwer, Dordrecht, p. 309.

    Google Scholar 

  22. Buonomo, A. and Di Bello, C. (1988) Solid State Electron. 31, 1555.

    Google Scholar 

  23. Meijer, P.H.E., Keskin, M. and Napiorkowski, M. (1988) J. Appl. Phys., 63, 1608.

    Google Scholar 

  24. Vasilevskii M.I., and Pantaleev, V.A. (1984) Sov. Phys. Solid State, 26, 33.

    Google Scholar 

  25. Hildebrand, O. (1982) Phys. Status. Solidi A, 72, 575.

    CAS  Google Scholar 

  26. Rothman, S.J. (1990) In Diffusion in Materials, NATO ASI Series Vol. 179 (eds A.L. Laskar, J.L. Boquet, G. Brébec and C. Monty), Kluwer, Dordrecht, p. 269.

    Google Scholar 

  27. Yeh, T.H. (1973) In Atomic Diffusion in Semiconductors (ed. D. Shaw), Plenum, London, Chapter 4.

    Google Scholar 

  28. Tuck, B. (1988) Atomic Diffusion in III–VI Semiconductors, Hilger, Bristol, Chapter 2.

    Google Scholar 

  29. Taylor, H.F., Smiley, V.N., Martin, W.E. and Pawka, S.S. (1972) Phys. Rev. B, 5, 1467.

    Google Scholar 

  30. Aven, M. and Halstead, R.E. (1965) Phys. Rev., 137, A228.

    Google Scholar 

  31. Zanio, K. (1970) J. Appl. Phys., 41, 1935.

    CAS  Google Scholar 

  32. Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W. and Logan, R.A. (1980) J. Appl. Phys., 51, 357.

    CAS  Google Scholar 

  33. Staudenmann, J.L., Horning, R.D., Knox, R.D., Reno, J., Sou, I.K., Faurie, J.P. and Arch, D.K. (1986) In Semiconductor Based Heterostructures (eds M.L. Green, J.E.E. Baglin, G.Y. Chin, H.W. Deckman, W. Mayo and D. Narasinham) Metallurgical Society, of AIME, Warrendale, PA, p. 41.

    Google Scholar 

  34. Imai, A., Kobayashi, M., Dosho, S., Kongai, M. and Takahashi, K. (1988) J. Appl. Phys., 64, 647.

    CAS  Google Scholar 

  35. van de Walle, G.F.A., van IJzendoorn, L.J., van Gorkum, A.A., van den Heuvel, R.J. and Theunissen, A.M.L. (1990) Semicond. Sci. Technol., 5, 345.

    Google Scholar 

  36. Kim, Y., Ourmazd, A. and Feldman, R.D. (1990) J. Vac. Sci. Technol. A, 8, 1116.

    CAS  Google Scholar 

  37. Schubert, E.F., Tu, C.W., Kopf, R.F., Kuo, J.M. and Lunardi, L.M. (1989) Appl. Phys. Lett., 54, 2592.

    CAS  Google Scholar 

  38. Jones, E.D. (1972) J. Phys. Chem. Solids. 33, 2063.

    CAS  Google Scholar 

  39. Sysoev, L.A., Fel’dman, A.Ya., Koraleva, A.D. and Kravchenko, N.G. (1969) Inorg. Mater., USA, 5, 1889.

    Google Scholar 

  40. Jones, E.D. and Mykura, H. (1978) J. Phys. Chem. Solids, 39, 11.

    CAS  Google Scholar 

  41. Jones, E.D. and Mykura, H. (1980) J. Phys. Chem. Solids, 41, 1261.

    CAS  Google Scholar 

  42. Berding, M.A., van Schilfgaarde, M., Paxton, A.T. and Sher, A. (1990) J. Vac. Sci. Technol. A, 8, 1103.

    CAS  Google Scholar 

  43. Zmija, J. (1973) Acta Physi. Pol. A, 43, 345.

    CAS  Google Scholar 

  44. Williams, V.A. (1972) J. Mater. Sci, 7, 807.

    CAS  Google Scholar 

  45. Astles, M.G. and Blackmore, G. (1986) J. Electron. Mater., 15, 287.

    CAS  Google Scholar 

  46. Secco, E.A. (1958) J. Chem. Phys., 29, 406.

    CAS  Google Scholar 

  47. Jones, E.D. and Stewart, N.M. (1989) J. Cryst. Growth, 96, 40, and private communication.

    CAS  Google Scholar 

  48. Borsenberger, P.M., Stevenson, D.A. and Burmeister, R.A. (1967) In II-VI Semiconducting Compounds (ed. D.G. Thomas), Benjamin, New York, p. 439.

    Google Scholar 

  49. Jones, E.D., Stewart, N.M. and Thambipillai, V. (1989) J. Cryst. Growth, 96, 453.

    CAS  Google Scholar 

  50. Jamil, N.Y., Shaw, D. and Lunn, B., to be published.

    Google Scholar 

  51. Zanio, K. (1970) J. Appl. Phys., 41, 1935.

    CAS  Google Scholar 

  52. Rud’, Yu.V. and Sanin, K.V. (1972) Sov. Phys. Semicond., 6, 764.

    Google Scholar 

  53. Rud’ Yu.V. and Sanin, K.V. (1974) Inorg. Mater., 10, 839.

    Google Scholar 

  54. Boyn, R, Goede, O. and Kushnerus, S. (1965) Phys. Status Solidi, 12, 57.

    CAS  Google Scholar 

  55. Kumar, V. and Kroger, F.A. (1971) J. Solid State Chem., 3, 406.

    CAS  Google Scholar 

  56. Stevenson, D.A. (1973) In Atomic Diffusion in Semiconductors (ed. D. Shaw), Plenum, London, Chapter 7.

    Google Scholar 

  57. Chern, S.S. and Kroger, F.A. (1975) J. Solid. State Chem., 14, 299.

    CAS  Google Scholar 

  58. Tuck, B. (1988) Atomic Diffusion in III–VI Semiconductors, Hilger, Bristol.

    Google Scholar 

  59. Lukaszewicz, T. and Zmija, J. (1980) Phys. Status Solidi A, 62, 695.

    CAS  Google Scholar 

  60. Martin, P. and Bontemps, A. (1980) J. Phys. Chem. Solids, 41, 1171.

    CAS  Google Scholar 

  61. Svob, L., Heurtel, A. and Marfaing, Y. (1988) J. Cryst. Growth, 86, 815.

    CAS  Google Scholar 

  62. Svob, L. and Marfaing, Y. (1982) J. Cryst. Growth, 59, 276.

    CAS  Google Scholar 

  63. Woodbury, H.H. and Aven, M. (1968) J. Appl. Phys., 39, 5485.

    CAS  Google Scholar 

  64. Panchuk, O.E., Grytsiv, V.l. and Belotskii, D.P. (1975) Inorg. Mater., USA, 11, 1510.

    Google Scholar 

  65. Teramoto, I. and Takayanagi, S. (1962) J. Jpn. Phys. Soc., 17, 1137.

    CAS  Google Scholar 

  66. Akutagawa, W., Turnbull, D., Chu, W.K. and Mayer, J.W. (1975) J. Phys. Chem. Solids, 36, 521.

    CAS  Google Scholar 

  67. Nelkowski, H. and Bollman, G. (1969) Z. Naturforsch. A, 24, 1302.

    CAS  Google Scholar 

  68. Zmija, J. and Demianiuk, M. (1971) Acta Phys. Pol. A, 39, 539.

    CAS  Google Scholar 

  69. Mann, H., Linker, G. and Meyer, O. (1972) Solid State Commun., 11, 475.

    CAS  Google Scholar 

  70. Yamaguchi, M. and Shigematsu, T. (1978) Jpn. J. Appl. Phys., 17, 335. (1978).

    CAS  Google Scholar 

  71. Lukaszewicz, T. (1982) Phys. Status Solidi A, 73, 611.

    CAS  Google Scholar 

  72. Szeto, W. and Somorjai, G.A. (1966) J. Chem. Phys., 44, 3490.

    CAS  Google Scholar 

  73. Clarke, R.L. (1959) J. Appl. Phys., 30, 957.

    CAS  Google Scholar 

  74. Woodbury, H.H. (1965) J. Appl. Phys., 36, 2287.

    CAS  Google Scholar 

  75. Slinkina, M.V., Zhakovskii, V.M. and Shukovskaya, A.S. (1984) Sov. Phys. Solid State, 26, 1361.

    Google Scholar 

  76. Chamonal, J.P., Molva, E., Pautrat, J.L. and Revoil, L. (1982) J. Cryst. Growth, 59, 297.

    CAS  Google Scholar 

  77. Hage-Ali, M., Mitchell, I.V., Grob, J.J. and Siffert, P. (1973) Thin Solid Films, 19, 409.

    Google Scholar 

  78. Musa, A., Ponpon, J.P., Grob, J.J., Hage-Ali, M., Stuck, R. and Siffert, P. (1983) J. Appl Phys., 54, 3260.

    CAS  Google Scholar 

  79. Nebauer, E. (1968) Phys. Status Solidi, 29, 269.

    CAS  Google Scholar 

  80. Nebauer, E. and Quednau, F. (1984) Phys. Status. Solidi A, 26, 225.

    Google Scholar 

  81. Sullivan, G.A. (1969) Phys. Rev., 184, 796.

    CAS  Google Scholar 

  82. Sullivan, J.L. (1973) J. Phys. D, 6, 552.

    CAS  Google Scholar 

  83. Sullivan, J.L. (1975) Thin Solid Films, 25, 245.

    CAS  Google Scholar 

  84. Yokozawa, M., Kato, H. and Takayanagi, S. (1968) Denki Kakagu, 36, 282.

    CAS  Google Scholar 

  85. Takenoshita, H., Kido, K. and Sawai, K. (1986) Jpn. J. Appl. Phys., 25, 1610.

    CAS  Google Scholar 

  86. Bryant, F.J., Krier, A. and Zhong, G.Z. (1985) Solid State Electron., 28, 847.

    CAS  Google Scholar 

  87. Watson, E. and Shaw, D. (1983) J. Phys. C, 16, 515.

    CAS  Google Scholar 

  88. Aven, M. and Kreiger, E.L. (1970) J. Appl. Phys., 41, 1930.

    CAS  Google Scholar 

  89. Bjerkeland, H. and Holwech, I. (1972) Phys. Norv., 6, 139.

    CAS  Google Scholar 

  90. Muranoi, T. and Furukoshi, M. (1981) Thin Solid Films, 86, 307.

    CAS  Google Scholar 

  91. Kun, Z.K. and Robinson, R.J. (1976) J. Electron. Mater., 5, 23.

    CAS  Google Scholar 

  92. Chern, S.S. and Kroger, F.A. (1974) Phys. Status Solidi A, 25, 215.

    CAS  Google Scholar 

  93. Jones, E.D. and Vere, D.M. (1985) J. Cryst. Growth, 72, 184.

    CAS  Google Scholar 

  94. Woodbury, H.H., (1967) In II–VI Semiconducting Compounds (ed. D.G. Thomas), Benjamin, New York, p. 244.

    Google Scholar 

  95. Hall, R.B. and Woodbury, H.H. (1968) J. Appl. Phys., 39, 5361.

    CAS  Google Scholar 

  96. Panchuk, O.E., Shcherbak, L.P, Feichuk, P.I. and Savitskii, A.V. (1978) Inorg. Mater., USA, 14, 41,

    Google Scholar 

  97. Shaw, D. and Watson, E. (1984) J. Phys. C, 17, 4945.

    CAS  Google Scholar 

  98. Mandel, G. and Morehead, F.F. (1964) Appl. Phys. Lett., 4, 143.

    CAS  Google Scholar 

  99. Yokota, K, Yoshikawa, T., Inano, S., Morioka, T. and Katayama, S. (1990) J. Appl. Phys., 56, 866.

    CAS  Google Scholar 

  100. Vodovatov, F.F., Indenbaum, C.V. and Vanyukov, A.V. (1970) Sov. Phys. Solid State, 12, 17.

    Google Scholar 

  101. Girton, D.G. and Anderson, W.W. (1969) Trans. Metall. Soc. AIME, 245, 465.

    CAS  Google Scholar 

  102. Panchuk, O.E., Fesh, R.N., Savitskii, A.V. and Shcherbak, L.P. (1981) Inorg. Mater. USA, 17, 1004.

    Google Scholar 

  103. Golding, T.D., Martinka, M. and Dinan, J.H. (1988) J. Appl. Phys., 64, 1873.

    CAS  Google Scholar 

  104. Kassel, L., Abad, H., Garland, J.W., Raccah, P.M., Potts, J.E., Haase, M.A. and Cheng, H. (1990) Appl. Phys. Lett., 56, 42.

    CAS  Google Scholar 

  105. Martin, W.E. (1973) J. Appl. Phys., 44, 5639.

    CAS  Google Scholar 

  106. Blömer, F. and Leute, V. (1973) Z. Phys. Chem., N.F., 85, 47.

    Google Scholar 

  107. Leute, V. and Blömer, F. (1974) Z. Phys. Chem. N.F., 89, 15.

    CAS  Google Scholar 

  108. Woodbury, H.H. and Hall, R.B. (1967) Phys. Rev., 157, 641.

    CAS  Google Scholar 

  109. Nakano, M. and Igaki, K. (1982) Trans. Jpn. Inst. Met., 23, 103.

    CAS  Google Scholar 

  110. Nebauer, E. (1973) Phys. Status Solidi A, 19, K183.

    CAS  Google Scholar 

  111. Biter, W.F. and Williams, F. (1971) J. Lumin., 3, 395.

    CAS  Google Scholar 

  112. Asami, S, Ebina, A. and Takahashi, P. (1978) Jpn. J. Appl. Phys., 17, 779.

    CAS  Google Scholar 

  113. Al-Dallal, S. (1977) Phys. Status Solidi A, 44, 183.

    CAS  Google Scholar 

  114. Shaw, D. (1990) in Diffusion in Materials, NATO ASI Series Vol. 179 (eds A.L. Laskar, J.L. Bouquet, G. Brébec and C. Monty, Kluwer, Dordrecht, p. 557.

    Google Scholar 

  115. Morgan-Pond, C.G., Schick, J.T. and Goettig, S. (1989) J. Vac. Sci Tchnol. A7, 354.

    Google Scholar 

  116. Schick, J.T. and Morgan-Pond, C.G. J. (1990) J. Vac. Sci. Technol A, 8, 1108.

    CAS  Google Scholar 

  117. Lorenz, M.R. (1967) Physics and Chemistry of II–VI Compounds (eds M. Aven and J.S. Prener), North-Holland, Amsterdam, Table 2.3.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shaw, D. (1992). Self- and impurity diffusion processes in widegap II–VI materials. In: Ruda, H.E. (eds) Widegap II–VI Compounds for Opto-electronic Applications. Electronic Materials Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3486-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3486-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-39100-2

  • Online ISBN: 978-1-4615-3486-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics