Skip to main content

Collective Computation of Many-Body Properties by Neural Networks

  • Chapter
Recent Progress in Many-Body Theories

Abstract

Artificial neural networks constitute a novel class of many-body systems in which the particles are neuron-like units and the interactions are weighted synapse-like connections between these units.1,2 The most extraordinary feature of these systems is that the interactions are subject to modification, depending on the states recently visited by the system. Thus, as the network experiences varied stimuli, knowledge can be stored in the neuron-neuron interactions, for later retrieval in some information-processing task. Indeed, multilayered, feedforward networks of analog neurons can be taught by example to solve complex pat tern-categorization problems using the backpropagation learning algorithm3 or other procedures for modifying connection weights. During the learning process, inner neurons may evolve into useful feature detectors tailored to regularities or correlations inherent in the ensemble of input stimulus patterns and desired output response patterns used for training. The system builds an internal representation, or model, of its pattern environment, which may provide a good approximation to the actual rules determining the underlying input-output map. Accordingly, the artificial neural network may possess a useful generalization or predictive ability, as demonstrated by a high percentage of correct responses when presented with unfamiliar input patterns absent from the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Müller and J. Reinhardt, Neural Networks — an Introduction, Springer, Heidelberg (1990).

    MATH  Google Scholar 

  2. J. W. Clark, “Neural network modelling,” Physics in Medicine and Biology (in press).

    Google Scholar 

  3. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in Parallel Distributed Processing: Explorations in the Micro structure of Cognition, Vol. 1, D. E. Rumelhart, J. L. McClelland, et al., eds., MIT Press, Cambridge, MA (1986).

    Google Scholar 

  4. H. Bohr, J. Bohr, S. Brunak, R. M. J. Cotterill, B. Lautrup, L. Nøskov, O. H. Olsen, and S. B. Petersen, FEBS Letters B241:223 (1988); N. Qian and T. J. Sejnowski, J. Molec. Biol. 202:865 (1988); H. Bohr, J. Bohr, S. Brunak, R. M. J. Cotterill, H. Fredholm, B. Lautrup, and S. B. Petersen, FEBS Letters 261:43 (1990).

    Article  Google Scholar 

  5. B. Denby, Comput. Phys. Commun. 49:429 (1988); C. Peterson, Nucl. Instr. Methods A279:537 (1989); B. Denby and S. L. Linn, Comput. Phys. Commun. 56:293 (1990); B. Humpert, Comput. Phys. Commun. 56: 299 (1990).

    Article  ADS  Google Scholar 

  6. J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, and D. Sandier, Nature 348:221 (1990); D. Sandier, T. K. Barrett, D. A. Palmer, R. Q. Fugate, and W. J. Wild, Nature 351:300 (1991); S. C. Odenwahn, E. B. Stockwell, R. L. Pennington, R. M. Humphreys, and W. A. Zumach, “Automated star/galaxy discrimination with neural networks,” Ap. J. (in press).

    Article  ADS  Google Scholar 

  7. B. Meyer, T. Hansen, D. Nute, P. Albersheim, A. Darvill, W. York, and J. Sellers, Science 251: 542 (1991).

    Article  ADS  Google Scholar 

  8. S. Brunak, J. Engelbrecht, and S. Knudsen, J. Molec. Biol. 220 (1991).

    Google Scholar 

  9. J. W. Clark, S. Gazula, and H. Bohr, “Teaching nuclear systematics to neural networks,” in Neural Networks: From Biology to High-Energy Physics, O. Benhar, C. Bosio, P. del Giudice, and E. Tabet, eds., in press.

    Google Scholar 

  10. P. Stolorz, A. Lapedes, and Y. Xia, “Predicting protein secondary structure using neural net and statistical methods,” J. Molec. Biol. (submitted).

    Google Scholar 

  11. D. G. Luenberger, Linear and Nonlinear Programming, Second Edition, Addison-Wesley, Reading, MA (1984).

    MATH  Google Scholar 

  12. F. W. Walker, D. G. Miller, and F. Feiner, Chart of the Nuclides, Thirteenth Edition, General Electric, San Jose, CA (1984).

    Google Scholar 

  13. J. W. Clark and S. Gazula, “Artificial neural networks that learn many-body physics,” in Condensed Matter Theories, Vol. 6, S. Fantoni and S. Rosati, eds., Plenum, New York (1991).

    Google Scholar 

  14. S. Gazula, J. W. Clark, and H. Bohr, “Learning and prediction of nuclear stability by neural networks, Nucl. Phys. A (submitted).

    Google Scholar 

  15. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81:1 (1966).

    Google Scholar 

  16. P. Möller and J. R. Nix, Atomic Data and Nuclear Data Tables 39:213 (1988).

    Article  ADS  Google Scholar 

  17. J. W. Clark, S. Gazula, and H. Bohr, “Nuclear phenomenology with neural nets,” in Complex Dynamics in Neural Networks, E. R. Caianiello, J. W. Clark, R. M. J. Cotterill, and J. G. Taylor, eds., Springer, Heidelberg (1992), in press.

    Google Scholar 

  18. P. E. Haustein, Atomic and Nuclear Data Tables 39:185 (1988).

    Article  ADS  Google Scholar 

  19. P. J. Masson and J. Jänecke, Atomic and Nuclear Data Tables 39:273 (1988).

    Article  ADS  Google Scholar 

  20. M. C. Mozer and P. Smolensky, in Neural Information Processing Systems, Vol. 1, D. Touretzky, ed., Morgan Kaufmann, San Mateo (1989).

    Google Scholar 

  21. Y. Le Cun, J. S. Denker, and S. A. Solla, in Neural Information Processing Systems, Vol. 2, D. Touretzky, ed., Morgan Kaufmann, New York (1990).

    Google Scholar 

  22. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I, W. A. Benjamin, New York (1969).

    Google Scholar 

  23. S. G. Thompson and C. F. Tsang, Science 178:1047 (1972).

    Article  ADS  Google Scholar 

  24. P. Möller and J. R. Nix, Nucl. Phys. A520:369c (1990).

    ADS  Google Scholar 

  25. C. McMillan, M. C. Mozer, and P. Smolensky, “The connectionist scientist game: rule extraction in a neural network,” Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society, Erlbaum, Hilsdale, NJ (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, J.W., Gazula, S., Gernoth, K.A., Hasenbein, J., Prater, J.S., Bohr, H. (1992). Collective Computation of Many-Body Properties by Neural Networks. In: Ainsworth, T.L., Campbell, C.E., Clements, B.E., Krotscheck, E. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3466-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3466-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6535-8

  • Online ISBN: 978-1-4615-3466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics