Skip to main content

Exact Questions to Some Interesting Answers in Many Body Physics

  • Chapter
Recent Progress in Many-Body Theories

Abstract

In many body physics, we are usually faced with the intractable problem of finding the ground state wavefunction of a thermo dynamic ally large system of interacting particles. Typically this problem is solved perturbatively. That is, we start with some simple noninteracting Hamiltonian and its ground state (e.g. the free Fermi gas) and perturb in the interactions (e.g. the Coulomb potential):

$$Hamiltonian H\to perturbation theory\to ground state \left| \Psi \right\rangle .$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. We are indebted to C. L. Kane for suggesting the clever title of this article.

    Google Scholar 

  2. R. P. Feynman, Statistical Mechanics, (Benjamin, New York, 1972).

    Google Scholar 

  3. G. D. Mahan, Many Particle Physics, second edition (Plenum, New York, 1990) and references therein.

    Book  Google Scholar 

  4. D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Phys. Rev. Lett. 60, 531 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  5. S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. Lett. 54, 581 (1985); Phys. Rev. B 33, 2481 (1986); see also S. M. Girvin in Chapter 9 of Ref[28].

    Article  ADS  Google Scholar 

  6. To fix the sing of, we take.

    Google Scholar 

  7. By “macroscopically distinct”, we mean that the overlap between the two states decreases exponentially with the size of the system.

    Google Scholar 

  8. C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388 and 1399 (1969); J. Phys. C 3, 911 (1970); P. M. van den Broek, Phys. Lett. 77A, 261 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  9. W. J. Caspers, K. M. Emmett, and W. Magnus, J. Phys. A 17, 2697 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Bethe, Z. Phys. 71, 205 (1931).

    Article  ADS  Google Scholar 

  11. F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  12. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1144 (1966).

    ADS  Google Scholar 

  13. F. D. M. Haldane, Phys. Rev. B 25, 4295 (1982).

    Article  Google Scholar 

  14. S. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964 (1981). See also Ref[9].

    Article  ADS  Google Scholar 

  15. A handful of exact excited states are known. See C. K. Majumdar, K. Krishnan, and V. Mubayi, J. Phys. C 5, 2896 (1972) and also W. J. Caspers and W. Magnus, Phys. Lett. 88A, 103 (1982).

    Article  ADS  Google Scholar 

  16. P. Kulish and E. Sklyanin, in Lecture Notes in Physics (Springer-Verlag, Berlin, 1982), Vol. 151, p. 61; P. Kulish, N. Yu. Reshetikhin and E. Sklyanin, Lett. Math. Phys. 5, 393 (1981); L. Takhtajan, Phys. Lett. 90A, 479 (1982); J. Babudjian, Nucl. Phys. B125, 317 (1983).

    Google Scholar 

  17. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  18. One can say that creates a state transforming by the adjoint representation of SU(2).

    Google Scholar 

  19. F. D. M. Haldane, unpublished.

    Google Scholar 

  20. Ian Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987); Comm. Math. Phys. 115, 477 (1988).

    Article  ADS  Google Scholar 

  21. D. P. Arovas, Phys. Lett. 137A, 431 (1989).

    ADS  Google Scholar 

  22. F. D. M. Haldane, Phys. Lett. 93A, 464 (1983); Phys. Rev. Lett. 50, 1153 (1983).

    MathSciNet  ADS  Google Scholar 

  23. J. Solyom, Phys. Rev. B 36, 8642 (1987).

    Article  ADS  Google Scholar 

  24. T. Kennedy, J. Phys.: Cond. Matter 2, 5737 (1990).

    Article  ADS  Google Scholar 

  25. R. Jastrow, Phys. Rev. 98, 1479 (1955).

    Article  ADS  MATH  Google Scholar 

  26. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) and also in Chapter 7 of Ref[28].

    Article  ADS  Google Scholar 

  27. E. J. Neves and J. F. Perez, Phys. Lett. 114A, 331 (1986).

    ADS  Google Scholar 

  28. The Quantum Hall Effect 2nd ed., edited by R. E. Prange and S. M. Girvin (Springer-Verlag, New York, 1990).

    Google Scholar 

  29. J. M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, J. Stat. Phys. 28, 2 (1985); M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980); B. Jancovici, Phys. Rev. Lett. 46, 386 (1981).

    Google Scholar 

  30. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983) and also in Chapter 8 of Ref[28].

    Article  MathSciNet  ADS  Google Scholar 

  31. See also S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985).

    Article  ADS  Google Scholar 

  32. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  ADS  MATH  Google Scholar 

  33. E. H. Rezayi, private communications.

    Google Scholar 

  34. I. Affleck, Phys. Rev. Lett. 54, 966 (1985); I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  35. D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

    Article  ADS  Google Scholar 

  36. N. Read and S. Sachdev, Nucl. Phys. B316, 609 (1989); Phys. Rev. Lett. 62, 1694 (1989); Phys. Rev. B 42, 4568 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  37. N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983); N. E. Bickers, p59, 845, 1987.

    Article  ADS  Google Scholar 

  38. I. Affleck, D. P. Arovas, J. B. Marston, and D. A. Rabson, “SU(2n) Quantum Antifer-romagnets with Exact C-Breaking Ground States” (accepted for publication in Nucl. Phys. B).

    Google Scholar 

  39. B. Sutherland, J. Math. Phys. 12, 246 (1971); J. Math. Phys. 12, 251 (1971); Phys. Rev. A 5, 1372 (1972).

    Article  ADS  Google Scholar 

  40. C. L. Kane, S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 43, 3255 (1991).

    Article  ADS  Google Scholar 

  41. D. H. Lee and M. P. A. Fisher, Phys. Rev. Lett. 63, 903 (1989); M. P. A. Fisher and D. H. Lee, Phys. Rev. B 39, 2756 (1989); X. G. Wen and A. Zee, Int. J. Mod. Phys. B 4, 437 (1990).

    Article  ADS  Google Scholar 

  42. Min-Chul Cha, Matthew P. A. Fisher, S. M. Girvin, Mats Wallin, and A. Peter Young, Phys. Rev. B (October 1, 1991).

    Google Scholar 

  43. Nandini Trivedi and D. M. Ceperley, Phys. Rev. B 40, 2737 (1989); Phys. Rev. B 41, 4552 (1990).

    Article  ADS  Google Scholar 

  44. L. Reatto and G. V. Chester, Phys. Rev. 155, 88 (1967).

    Article  ADS  Google Scholar 

  45. C. L. Kane, private communication.

    Google Scholar 

  46. Phillipe Nozières and David Pines, The Theory of Quantum Liquids, II (Addison-Wesley, Reading, MA, 1989).

    Google Scholar 

  47. Petter Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  48. S. M. Girvin, in Chapter 10 of Ref[28].

    Google Scholar 

  49. S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).

    Article  ADS  Google Scholar 

  50. N. Read, Phys. Rev. Lett. 62, 86 (1989).

    Article  ADS  Google Scholar 

  51. S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989).

    Article  ADS  Google Scholar 

  52. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124 (1972).

    Article  ADS  Google Scholar 

  53. V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)].

    Google Scholar 

  54. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).

    Article  ADS  Google Scholar 

  55. N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961); C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

    Article  ADS  Google Scholar 

  56. A. H. MacDonald and S. M. Girvin, Phys. Rev. B 38, 6295 (1988).

    Article  ADS  Google Scholar 

  57. B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).

    Google Scholar 

  58. P. W. Anderson (private communication).

    Google Scholar 

  59. J. M. Leinaas and J. Myerheim, II Nuovo Cimento 37B, 1 (1977).

    ADS  Google Scholar 

  60. F. Wilczek, Phys. Rev. Lett. 48, 11144 (1982); ibid. 49, 957 (1982).

    MathSciNet  ADS  Google Scholar 

  61. G. S. Canright and S. M. Girvin, Science 247, 1197 (1990).

    Article  ADS  Google Scholar 

  62. D. P. Arovas, J. R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys. B251, 117 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  63. R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988); Science 242, 525 (1988).

    Article  ADS  Google Scholar 

  64. S. M. Girvin, in Appendix I of Ref[28].

    Google Scholar 

  65. E. H. Rezayi and F. D. M. Haldane, Phys. Rev. Lett. 61, 1985 (1988).

    Article  ADS  Google Scholar 

  66. J. K. Jain, Phys. Rev. B 41, 7653 (1990).

    Article  ADS  Google Scholar 

  67. K. Rommelse and M. den Nijs, Phys. Rev. Lett. 59, 2578 (1987); M. Den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).

    Article  ADS  Google Scholar 

  68. S. M. Girvin and D. P. Arovas, Physica Scripta T27, 156 (1989).

    Article  ADS  Google Scholar 

  69. Y. Hatsugai and M. Kohmoto, “Numerical Study of the Hidden Antiferromagnetic Order in the Haldane Phase”, ISSP preprint, 1991.

    Google Scholar 

  70. I. Affleck, Nucl. Phys. B265[FS15], 409 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  71. B. Sutherland, Phys. Rev. B 12, 3795 (1975).

    Article  ADS  Google Scholar 

  72. N. Read (private communication).

    Google Scholar 

  73. Shoucheng Zhang and Daniel P. Arovas, Phys. Rev. B 40, 2708 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arovas, D.P., Girvin, S.M. (1992). Exact Questions to Some Interesting Answers in Many Body Physics. In: Ainsworth, T.L., Campbell, C.E., Clements, B.E., Krotscheck, E. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3466-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3466-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6535-8

  • Online ISBN: 978-1-4615-3466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics