Skip to main content

Quantum Interference Phenomena in Strong Localization

  • Chapter
  • 411 Accesses

Abstract

The role of quantum interference phenomena is examined for strongly localized, non-interacting electrons. We compute, both numerically and analytically, the probability distribution for tunneling between sites separated a distance t, by summing all forward scattering paths. We find a probability distribution that is approximately log-normal; its mean proportional to t, and its variance growing as t , with ω depending on the dimension d. Since the mean and variance are independent, two parameters are necessary to describe the tunneling probability. We also study the response of the system to a magnetic field B, with and without spin-orbit (SO) scattering. Without SO a magnetic field leads to an increase in the localization length scaling as B 1/2. With SO, there is still a positive magnetoconductance (initially scaling as B 2 t 3), but no change in the localization length. The universal characteristics of the probability distribution can be probed by examining its moments. These moments describe the world lines of n attracting bosons in d - 1 dimensions- a well known many body problem! Various results for this simple problem are then used to provide analytical information on the distribution for tunneling in strong localization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent reviews see, P.A. Lee and B.L. Altshuler, Physics Today 41, 36 (1988); P.A. Lee and T.B. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); G. Bergmann, Phys. Rep. 107, 1 (1984).

    Article  Google Scholar 

  2. B.L. Altshuler and B.I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)]; P.A. Lee, A.D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987); F.J. Wegner, Z. Phys. B 35, 207 (1979).

    Google Scholar 

  3. N. Zannon and J.L. Pichard, J. Phys. (Paris) 49, 907 (1988).

    Article  Google Scholar 

  4. O. Faran and Z. Ovadyahu, Phys. Rev. B38, 5457 (1988).

    ADS  Google Scholar 

  5. V.L. Nguyen, B.Z. Spivak, and B.I. Shklovskii, Pis’ma Zh. Eksp. Teor. Fiz. 41, 35 (1985) [JETP Lett. 41, 42 (1985)]; Zh. Eksp. Teor. Fiz. 89, 11 (1985) [JETP Sov. Phys. 62, 1021 (1985)].

    Google Scholar 

  6. U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988); O. Entin-Wohlman, Y. Imry, and U. Sivan, Phys. Rev. B 40, 8342 (1988).

    Article  ADS  Google Scholar 

  7. Y. Meir, N.S. Wingreen, O. Entin-Wohlman, and B.L. Altshuler, Phys. Rev. Lett. 66, 1517 (1991).

    Article  ADS  Google Scholar 

  8. J.L. Pichard, M. Sanquer, K. Slevin, and P. Debray, Phys. Rev. Lett. 65, 1812 (1990).

    Article  ADS  Google Scholar 

  9. E. Medina, M. Kardar, Y. Shapir, and X. R. Wang, Phys. Rev. Lett. 62, 941 (1989); ibid, 64, 1816 (1990).

    Article  ADS  Google Scholar 

  10. E. Medina, and M. Kardar, Phys. Rev. Lett. 66, 3187 (1991); E. Medina, and M. Kardar, MIT preprint (1991).

    Article  ADS  Google Scholar 

  11. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  12. P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S. Fisher, Phys. Rev. B 22, 3519 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).

    Article  ADS  Google Scholar 

  14. Y. Shapir and X.R. Wang, Europhys. Lett. 4, 1165 (1987).

    Article  ADS  Google Scholar 

  15. M. Kardar, Nucl. Phys. B290[FS20], 582 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  16. For a general introduction to the literature on the directed polymer and interface growth problems, see M. Kardar, in New Trends in Magnetism, M.D. Coutinho-Filho and S.M. Rezende, eds. (World Scientific, Singapore, 1990) p. 277; M. Kardar, in Disorder and Fracture, J.C. Charmet, S. Roux, and E. Guyon, eds. (Plenum Press, New York, 1990) p. 3.

    Google Scholar 

  17. J.M. Kim and J.M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989).

    Article  ADS  Google Scholar 

  18. F.P. Milliken and Z. Ovadyahu, Phys. Rev. Lett. 65, 911 (1990).

    Article  ADS  Google Scholar 

  19. J. Cook and B. Derrida, Saclay preprint (1990).

    Google Scholar 

  20. Y. Shapir and Z. Ovadyahu, Phys. Rev. B 40, 12441 (1989).

    Article  ADS  Google Scholar 

  21. N. Evangelou and T. Ziman, J. Phys. C 20, L235 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kardar, M., Medina, E. (1992). Quantum Interference Phenomena in Strong Localization. In: Ainsworth, T.L., Campbell, C.E., Clements, B.E., Krotscheck, E. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3466-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3466-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6535-8

  • Online ISBN: 978-1-4615-3466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics