Virus Receptors: The Achilles’ Heel of Human Rhinoviruses

  • Richard J. Colonno
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 312)


Human Rhinoviruses (HRVs), members of the Picornaviridae, are the major causative agents of the common cold in humans (Gwaltney, Jr., 1982). There are currently 102 recognized serotypes that have been isolated and shown to be antigenically distinct (Hamparian et al., 1987). Similar to other picornaviruses, HRVs are non-enveloped viruses that contain four structural proteins, designated VP1, VP2, VP3, and VP4, which form a protein capsid with icosahedral symmetry. Within the viral capsid lies a single-stranded genome RNA which serves as a monocistronic mRNA for the synthesis of all 11 structural and non-structural proteins of the virus. Upon entry into a cell, the RNA genome is translated into a large polyprotein which is subsequently cleaved by two viral proteases encoded within the polyprotein (Palmenberg, 1987). The genome RNA alone is sufficient to initiate a viral infection since transfection of cells with HRV genome RNA results in the production of infectious progeny virus (Mizutani and Colonno, 1985).


Human Immunodeficiency Virus Neural Cell Adhesion Molecule Cellular Receptor Virus Binding Human Rhinovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, G., and Colonno, R.J., 1984, Many rhinovirus serotypes share the same cellular receptor, J. Virol., 51:340–345.PubMedGoogle Scholar
  2. Abraham, G., and Colonno, R.J., 1988, Characterization of human rhinoviruses displaced by an anti-receptor monoclonal antibody, J. Virol., 62:2300–2306.PubMedGoogle Scholar
  3. Al-Nakib, W., Higgins, P.G., Barrow, G.I., Tyrrell, D.A.J., Andries, K., Vanden Bussche, G., Taylor, N., and Janssen, P.A.J., 1989, Suppression of colds in human volunteers challenged with rhinovirus by a new synthetic drug (R61837), Antimicrob. Agents and Chemo., 33:522–525.CrossRefGoogle Scholar
  4. Arthos, J., Deen, K.C., Chaikin, M.A., Fornwald, J.A., Sathe, G., Sattentau, Q.J., Clapham, P.R., Weiss, R.A., McDougal, J.S., Pietropaolo, C., Axel, R., Truneh, A., Maddon, P.J., and Sweet, R.W., 1989, Identification of the residues in human CD4 critical for the binding of HIV, Cell, 57:469–481.CrossRefPubMedGoogle Scholar
  5. Badger, J., Minor, I., Kremer, M.J., Oliveira, M.A., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishnaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.D., Dutko, F.J., Fancher, M., Rueckert, R.R., and Heinz, B.A., 1988, Structural analysis of a series of antiviral agents complexed with human rhinovirus 14, Proc. Natl. Acad. Sci. USA, 85:3304–3308.CrossRefPubMedGoogle Scholar
  6. Clayton, L.K., Hussey, R.E., Steinbrich, R., Ramachandran, H., Husain, Y., and Reinherz, E.L., 1988, Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding, Nature, 335:363–366.CrossRefPubMedGoogle Scholar
  7. Colonno, R.J., 1987, Cell surface receptors for picornaviruses, BioEssays, 5:270–274.CrossRefGoogle Scholar
  8. Colormo, R.J., Abraham, G., and Tomassini, J.E., 1989, Molecularand biochemical aspects of human rhinovirus attachment to cellular receptors, in: “Molecular Aspects of Picornavirus Infection and Detection”, B.L. Semler and E. Ehrenfeld, eds., American Society for Microbiology, Washington.Google Scholar
  9. Colonno, R.J., Callahan, P.L., and Long, W.J., 1986, Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses, J. Virol., 57:7–12.PubMedGoogle Scholar
  10. Colonno, R.J., Condra, J.H., Mizutani, S., Callahan, P.L., Davies, M.E., and Murcko, M.A., 1988, Evidence for the direct involvement of the rhinovirus canyon in receptor binding, Proc. Natl. Acad. Sci. USA, 85:5449–5453.CrossRefPubMedGoogle Scholar
  11. Colonno, R.J., LaFemina, R.L., DeWitt, C.M., and Tomassini, J.E., 1990, The major group rhinoviruses utilize the intercellular adhesion molecule 1 ligand as a cellular receptor during infection, in: “New Aspects of Positive-Strand RNA Viruses”, M.A. Brinton and F.X. Heinz, eds., American Society for Microbiology, Washington.Google Scholar
  12. Colonno, R.J., Tomassini, J.E., and Callahan, P.L., 1987, Isolation and characterization of a monoclonal antibody which blocks attachment of human rhinoviruses, in: “Positive Strand RNA Viruses”, M.A. Brinton and R. Rueckert, eds., Alan R Liss, Inc., New York.Google Scholar
  13. Condra, J.H., Sardana, V.V., Tomassini, J.E., Schlabach, A.J., Davies, M.E., Lineberger, D.W., Graham, D.J., Gotlib, L., and Colonno, R.J., 1990, Bacterial expression of antibody fragments that block human rhinovirus infection of cultured cells, J Biol. Chem., 265:2292–2295.PubMedGoogle Scholar
  14. Cosimi, A.B., Conti, D., Delmonico, F.L., Preffer, F.I., Wee, S.L., Rothlein, R., Faanes, R., and Colvin, R.B., 1990, In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts, J. Immunol., 144:4604–4612.PubMedGoogle Scholar
  15. Dustin, M.L., Staunton, D.W., and Springer, T.A., 1988, Supergene families meet in the immune system, Immunol. Today, 9:213–215.CrossRefPubMedGoogle Scholar
  16. Giranda, V.L., Chapman, M.S., Rossmann, M.G., 1990, Modeling of the human intercellular adhesion molecule-1, the human rhino-virus major group receptor, Proteins: Struct., Funct., and Genetics, 7:227–233.CrossRefGoogle Scholar
  17. Greve, J.M., Davis, G., Meyer, A.M., Forte, C.P., Yost, S.C., Marlow, C.W., Kamarck, M.E., and McClelland, A., 1989, The major human rhinovirus receptor is ICAM1, Cell, 56:839–847.CrossRefPubMedGoogle Scholar
  18. Gwaltney, J.M., Jr., 1982, Rhinoviruses, in: “Viral Infection of Man: Epidemiology and Control”, E.A. Evans, ed., Plenum Publishing Corp., New York.Google Scholar
  19. Hamparian, V.V., Colonno, R.J., Cooney, M.K., Dick, E.C., Gwaltney, Jr., J.M., Hughes, J.H., Jordan, Jr., W.S., Kapikian, A.Z., Mogabgab, W.J., Monto, A., Phillips, C.A., Rueckert, R.R., Schieble, J.H., Stott, E.J., and Tyrrell, D.A.J., 1987, A collaborative report: rhinoviruses--extension of the numbering system from 89 to 100, Virol., 159:191–192.CrossRefGoogle Scholar
  20. Hayden, F.G., Gwaltney, Jr., J.M., and Colonno, R.J., 1988, Modification of experimental rhinovirus colds by receptor blockade, Antiviral Res., 9:233–247.CrossRefPubMedGoogle Scholar
  21. Hsia, J., Sztein, M.B., Naylor, P.H., Simon, G.L., Goldstein, A.L., and Hayden, F.G., 1989, Modulation of thymosin alpha 1 and thymosin beta 4 levels and peripheral blood mononuclear cell subsets during experimental rhinovirus colds, Lymphokine Res., 8:383–391.PubMedGoogle Scholar
  22. Ibegbu, C.C., Kennedy, M.S., Maddon, P.J., Deen, K.C., Hicks, D., Sweet, R.W., and McDougal, J.S., 1989, Structural features of CD4 required for binding to HIV, J. Immunol., 142:2250–2256.PubMedGoogle Scholar
  23. Jameson, B.A., Rao, P.E., Kong, Li, Hahn, B.H., Shaw, G.M., Hood, L.E., and Kent, S.B.H., 1988, Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein, Science, 240:1335–1339.CrossRefPubMedGoogle Scholar
  24. Kishimoto, T.K., Larson, R.S., Corbi, A.L., Dustin, M.L., Staunton, D.W., and Springer, T.A., 1989, The leukocyte integrins, in: “Advances in Immunology”, F.J. Dixon, ed., Academic Press, Inc., San Diego.Google Scholar
  25. Landau, N.R., Warton, M., and Littman, D.R., 1988, The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4, Nature, 334:159–162.CrossRefPubMedGoogle Scholar
  26. Lineberger, D.W., Graham, D.J., Tomassini, J.E., and Colonno, R.J., 1990, Antibodies that block rhinovirus attachment map to domain 1 of the major group receptor, J. Virol., 64:2582–2587.PubMedGoogle Scholar
  27. Littman, D.R., and Gettner, S.N., 1987, Unusual intron in the immunoglobulin domain of the newly isolated murine CD4 (L3T4) gene, Nature, 325:453–455.CrossRefPubMedGoogle Scholar
  28. Makgoba, M.W., Sanders, M.E., Ginther Luce, G.E., Gugel, E.A., Dustin, M.L., Springer, T.A., and Shaw, S., 1988, Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1 dependent adhesion in T cell-mediated cytotoxicity, Eur. J. Immunol., 18:637–640.CrossRefPubMedGoogle Scholar
  29. Marlin, S.D., Staunton, D.E., Springer, T.A., Stratowa, C., Sommergruber, W., and Merluzzi, V.J., 1990, A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection, Nature, 344:70–72.CrossRefPubMedGoogle Scholar
  30. Mendelsohn, C.L., Wimmer, E., and Racaniello, V., 1989, Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily, Cell, 56:855–865.CrossRefPubMedGoogle Scholar
  31. Mizutani, S., and Colonno, R.J., 1985, In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14, J. Virol., 56:628–632.PubMedGoogle Scholar
  32. Naclerio, R.M., Proud, D., Lichtenstein, L.M., Kagey-Sobotka, A., Hendley, J.O., Sorrentino, J., and Gwaltney, J.M., 1988, Kinins are generated during experimental rhinovirus colds, J. Infect. Dis., 157:133–142.CrossRefPubMedGoogle Scholar
  33. Osborn, L., 1990, Leukocyte adhesion to endothelium in inflammation, Cell, 62:3–6.CrossRefPubMedGoogle Scholar
  34. Palmenberg, A.C., 1987, Picornaviral processing: some new ideas, J. Cell. Biochem., 33:191–198.CrossRefPubMedGoogle Scholar
  35. Peterson, A., and Seed, B., 1988, Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4, Cell, 54:65–72.CrossRefPubMedGoogle Scholar
  36. Pevear, D.C., Fancher, M.J., Felock, P.J., Rossmann, M.G., Miller, M.S., Diana, G., Treasurywala, A.M., McKinlay, M.A., and Dutko, F.J., 1989, Conformational change in the floor of the human rhinovirus canyon blocks adsorption of HeLa cell receptors, J.Virol., 63:2002–2007.PubMedGoogle Scholar
  37. Proud, D., Naclerio, R.M., Gwaltney, J.M., and Hendley, J.O., 1990, Kinins are generated in nasal secretions during natural rhinovirus colds, J. Inf. Dis., 161:120–123.CrossRefGoogle Scholar
  38. Rossmann, M.G., Arnold, E., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B., and Vriend, G., 1985, Structure of a human common cold virus andfunctional relationship to other picornaviruses, Nature, 317:145–153.CrossRefPubMedGoogle Scholar
  39. Simmons, D., Makgoba, M.W., and Seed, B., 1988, ICAM, an adhesion ligand of LFA1, is homologous to the neural cell adhesion molecule NCAM, Nature, 331:624–627.CrossRefPubMedGoogle Scholar
  40. Sorrentino, J., and Gwaltney, J.M., 1988, Kinins are generated during experimental rhinovirus colds, J.Infect. Dis., 157:133–142.CrossRefPubMedGoogle Scholar
  41. Springer, T.A., 1990, Adhesion receptors of the immune system, Nature, 346:425–433.CrossRefPubMedGoogle Scholar
  42. Springer, T.A., Dustin, M.L., Kishimoto, T.K., and Marlin, S.D., 1987, The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: Cell adhesion receptors of the immune system, in: “Annual Review of Immunology”, W.E. Paul, ed., Anuual Reviews Inc., Palo Alto.Google Scholar
  43. Staunton, D.E., Dustin, M.L., Erickson, H.P., and Springer, T.A., 1990, The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus, Cell, 61:243–254.CrossRefPubMedGoogle Scholar
  44. Staunton, D.E., Marlin, S.D., Stratowa, C., Dustin, M.L., and Springer, T.A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families, Cell, 52:925–933.CrossRefPubMedGoogle Scholar
  45. Staunton, D.E., Merluzzi, V.J., Rothlein, R., Barton, R., Marlin, S.D., and Springer, TA., 1989, A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses, Cell, 56:849–853.CrossRefPubMedGoogle Scholar
  46. Tomassini, J.E., and Colonno, R.J., 1986. Isolation of a receptor protein involved in attachment of human rhinoviruses, J. Virol., 58:290–295.PubMedGoogle Scholar
  47. Tomassini, J.E., Graham, D., DeWitt, C.M., Lineberger, D.W., Rodkey, J.A., and Colonno, R.J., 1989b, cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1, Proc. Natl. Acad. Sci. USA, 86:4907–4911.CrossRefGoogle Scholar
  48. Tomassini, J.E., Maxson, T.R., and Colonno, R.J., 1989a, Biochemical characterization of a glycoprotein required for rhinovirus attachment, J. Biol. Chem., 264:1656–1662.Google Scholar
  49. Turner, R.B., Winther, B., Hendley, J.O., Mygind, N., and Gwaltney, Jr., J.M., 1984, Acta Otolaryngol, 413:9–14.CrossRefGoogle Scholar
  50. Uncapher, C.R., DeWitt, C.M., and Colonno, R.J., 1991, The major and minor group receptor families contain all but one human rhinovirus serotype, Virol., 180: 814–817.CrossRefGoogle Scholar
  51. Wegner, C.D., Gundel, R.H., Reilly, P., Haynes, N., Letts, L.G., and Rothlein, R., 1990, Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma, Science, 247:456–459.CrossRefPubMedGoogle Scholar
  52. Wiley, D.C., and Skehel, J.J., 1987, The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu. Rev. Biochem., 56:365–394.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Richard J. Colonno
    • 1
  1. 1.Department of Virus and Cell BiologyMerck Sharp & Dohme Research LaboratoriesWest PointUSA

Personalised recommendations