Skip to main content

Mediolateral Intercalation of Mesodermal Cells in the Xenopus Laevis Gastrula

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 231))

Abstract

The prospective mesoderm is important in nearly every aspect of early vertebrate embryogenesis because of its morphogenetic functions and because of the pattern-forming, inductive functions of the Spemann “organizer” contained in its dorsal sector (Spemann, 1938). The objective of this paper is to focus on the morphogenesis of the mesoderm in early embryogenesis, specifically on the powerful convergence and extension movements of the prospective dorsal mesoderm. The two major morphogenetic processes in the gastrula mesoderm are the migration of the leading edge mesoderm across the roof of the blastocoel (see Nakatsuji, 1984; Keller and Winklbauer, 1991) and the convergence (narrowing) and extension (lengthening) movements of the prospective dorsal, axial and paraxial mesoderm (see Keller, 1986). The function, the cellular basis, and the tissue interactions involved in convergence and extension of the dorsal mesoderm of Xenopus have been investigated extensively in this laboratory and reviewed with emphasis on history and function (Keller, 1986), on the underlying motility (Keller et al.,1991a), and on cell interactions regulating cell motility and behavior (Keller et al.,1991b). Our objective here will be to summarize and simplify the fundamental features of the convergence and extension movements, including their cellular basis, their function, and their regulation by tissue interactions in Xenopus laevis, the African clawed frog.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Condic, M., Fristrom, D., and Fristrom, J., 1991, Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development 111: 23–33.

    PubMed  CAS  Google Scholar 

  • Hardin, J. and Keller, R., 1988, The behavior and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.

    CAS  Google Scholar 

  • Holtfreter, J., 1933, Die total Exogastrulation, eine Selbstablosung des Ektoderms von Entomesoderm. Arch. Entwicklungsmech. Org. 129: 669–793.

    Google Scholar 

  • Jacobson, A, Gordon, R., 1976, Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically, and by computer simulation. J. exp Zool. 197: 191–246.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E.,1975, Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Develop. Biol. 42: 222–241.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E., 1976, Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Develop. Biol. 51: 118–137.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E., 1978, Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morph. 157: 223–248.

    Article  Google Scholar 

  • Keller, R.E., 1980, The cellular basis of epiboly: An SEM study of deep cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. exp. Morph. 60: 201–234.

    CAS  Google Scholar 

  • Keller, R.E., 1981, An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216: 81–101.

    Article  CAS  Google Scholar 

  • Keller, R.E., 1984, The cellular basis of gastrulation in Xenopus laevis: active post-involution convergence and extension by medio-lateral interdigitation. Am. Zool. 24: 589–603.

    Google Scholar 

  • Keller, R.E., 1986, The cellular basis of amphibian gastrulation. In “Developmental Biology: A Comprehensive Synthesis” Vol. 2. Browder, L.(ed.) The Cellular Basis of Morphogenesis. Plenum Press, New York.

    Google Scholar 

  • Keller, R.E., 1987, Cell rearrangement in morphogenesis. Zool. Sci. 4: 763–779.

    Google Scholar 

  • Keller, R.E. and Schoenwolf, G.C., 1977, An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation in Xenopus laevis. Wilhelm Roux’s Arch. 182: 165–186.

    Article  Google Scholar 

  • Keller, R.E.,Danilchik, M., Gimlich, R., and Shih, J., 1985a, Convergent extension by cell intercalation during gastrulation of Xenopus laevis. In “Molecular Determinants of Animal Form” Edelman, G,M. (ed,) Alan R. Liss, Inc., New York. pp. 111–141.

    Google Scholar 

  • Keller, R.E., Danilchik, M., Gimlich, R., and Shih, J., 1985b, The function of convergent extension during gastrulation of Xenopus laevis. J. Embryol. exp. Morph. 89 Suppl: 185–209.

    Google Scholar 

  • Keller, R.E., and Trinkaus, J.P., 1987, Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Develop. Biol. 120: 12–24.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. and Danilchik, M., 1988, Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development. 103: 193–210.

    CAS  Google Scholar 

  • Keller, R.E. and Tibbetts, P. 1989. Mediolateral cell intercalation in the dorsal axial mesoderm of Xenopus. laevis. Develop. Biol., 131: 539–549

    Article  CAS  Google Scholar 

  • Keller, R.E., Cooper, M.S., Danilchik, M., Tibbetts,P. and Wilson, P.A., 1989a, Cell intercalation during notochord development in Xenopus laevis. J. exp. Zool. 251: 134–154.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E., Shih, J. and Wilson, P.A., 1989b, Morphological polarity of intercalating deep mesodermal cells in the organizer of Xenopus laevis gastrulae. Proceedings of the 47th annual meeting of the Electron Microscopy Society of America. San Francisco Press. p. 840

    Google Scholar 

  • Keller, R.E., Shih, J. and Wilson, P., 1991a, Cell Motility, Control and Function of Convergence and Extension During Gastrulation in Xenopus. In “Gastrulation: Movements, Patterns, and Molecules”. Keller, R., Clark, W. and Griffen. F, (eds.) Plenum Press. In press.

    Google Scholar 

  • Keller, R.E., Shih, J., Wilson, P., and Sater, A., 1991b, Pattern and function of cell motility and cell interactions during convergence and extension in Xenopus. In “Cell-cell interactions in early development” 49th Symp. Soc. Develop. Biol. Gerhart, J.C.(ed.) In press.

    Google Scholar 

  • Keller, R.E., Shih, J. and Sater, A., 1991c, The cellular basis of convergence and extension of the Xenopus neural plate. Submitted.

    Google Scholar 

  • Keller, R.E., Shih, J., Sater, A. and Moreno, C., 1991d, Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Submitted.

    Google Scholar 

  • Keller, R. and Winklbauer, R., 1991, The cellular basis of amphibian gastrulation. In “Current Topics in Developmental Biology” Pedersen, R.(ed). In press.

    Google Scholar 

  • Nakatsuji, N., 1984, Cell locomotion and contact guidance in amphibian gastrulation. Am. Zool. 24: 615–627.

    Google Scholar 

  • Schechtman, A.M., 1942, The mechanics of amphibian gastrulation. I. Gastrulation-producing interactions between various regions of an anuran egg (Hyla regilia). Univ. Calif. Publ. Zool. 51: 1–39.

    Google Scholar 

  • Schoenwolf G.C., Alvarez, I., 1989, Roles of neuroepithelial cell rearrangement and division in shaping the avian neural plate. Development 106: 427–439.

    PubMed  CAS  Google Scholar 

  • Shih, J. and Keller, R.E., 1991a, The mechanism of mediolateral intercalation during Xenopus gastrulation: directed protrusive activity and cell alignment. Submitted.

    Google Scholar 

  • Shih, J. and Keller, R.E., 1991b, Patterns of cell motility in the organiser of Xenopus. Submitted.

    Google Scholar 

  • Shih, J. and Keller, R.E., 1991c, The Epithelium of the dorsal marginal zone of Xenopus has organiser activity. Submitted.

    Google Scholar 

  • Spemann, H., 1938, “Embryonic Development and Induction” Yale University Press, New Haven.

    Google Scholar 

  • Spemann, H., 1938, “Embryonic Development and Induction” Yale University Press, New Haven.

    Google Scholar 

  • Vogt, W., 1929, Gestaltanalyse am Amphibienkein mit ortlicher Vitalfarbung. II. Teil. Gastrulation and Mesodermbildung bei Urodelen and Anuren. Wilhelm Roux Arch. Entw Mech. Org. 120: 384–706.

    Article  Google Scholar 

  • Warga, R, Kimmel, C., 1990, Cell movements during epiboly and gastrulation in zebrafish. Development 108: 569–580.

    PubMed  CAS  Google Scholar 

  • Wilson, P. A., Oster, G. and Keller, R., 1989, Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105: 155–166.

    PubMed  CAS  Google Scholar 

  • Wilson, P. and Keller, R., 1991, Cell Rearrangement During Gastrulation of Xenopus: Direct Observation of Cultured Explants. Development 112: 289–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, R., Shih, J. (1992). Mediolateral Intercalation of Mesodermal Cells in the Xenopus Laevis Gastrula. In: Bellairs, R., Sanders, E.J., Lash, J.W. (eds) Formation and Differentiation of Early Embryonic Mesoderm. NATO ASI Series, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3458-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3458-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6531-0

  • Online ISBN: 978-1-4615-3458-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics