Skip to main content

New Ferrocene Complexes and Polymers for Nonlinear Optical Applications

  • Chapter
Advances in New Materials

Part of the book series: Contemporary Topics in Polymer Science ((CTPS,volume 7))

  • 230 Accesses

Abstract

Ferrocene was the starting point for organometallic chemistry nearly four decades ago and is still today one of the most studied and versatile organometallic building blocks.1 Ferrocene has been incorporated in polymeric systems to alter bulk properties of the material.2 Ferrocene possesses excellent thermal and photochemical stability and can also protect polymeric systems from photodegradation.3 In addition, the ferrocene building block has been used in conducting polymers4 and in main chain liquid crystalline polyesters.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Rosenblum, “Chemistry of the Iron Group Metallocenes” Wiley, New York, (1965).

    Google Scholar 

  2. E. W. Neuse, J. R. Woodhouse, G. Montaudo, and C. Puglis, Appl. Organomet. Clem. 2: 53 (1988) and references cited therein.

    Article  Google Scholar 

  3. J. W. Harwood, “Industrial Applications of Organometallic Compounds,” Reinhold, New York (1963). J. C. Johnson, jr. “Metallocene Technology,” Noyes Data Corporation, Park Ridge, New Jersey (1973).

    Google Scholar 

  4. C. Iwakura, T. Kawai, M. Nojima, and H. Yoneyama, J.Electrochem. Soc. 134: 791 (1987). For general treatments of “Organometallic polymers” see: M.Zeldin, K. J.Wynne, Allcock, H. R., Eds., “Inorganic and Organometallic Polymers: Macromolecule, Containing Silicon, Phosphorus, and other Inorganic Elements,” ACS Symp. Ser., Washington D. C. (1987). C. U.Pittman, jr., M. D.Rausch, Pure Appl. Chem. 58: 617 (1986). J. E.Sheats, C. E.Carraher, C. U.Pittman, jr., Eds., ”Metal-Containing Polymer Systems,“ Plenum, New York (1985).

    Article  CAS  Google Scholar 

  5. P. Singh, M. D. Rausch, and R. W. Lenz, Polym. Bulletin 22: 247 (1989).

    Article  CAS  Google Scholar 

  6. For a general treatment of NLO materials see: “Nonlinear Optical and Electroactive Polymers”, eds. P. N. Prasad, D. R. Ulrich, Plenum Press, New York (1988).

    Google Scholar 

  7. M. L. H. Green, S. R. Marder, M. E. Thompson, J. A. Bandy, D. Bloor, P. V. Kolinsky, and R. J. Jones, Nature 330: 360 (1987). J. W. Perry, A. E. Stiegman, S. R. Marder, D. R. Coulter, in: “Organic Materials for Nonlinear Optics,” R. A. Hann and D. Bloor, eds.; Spec. Publ. No. 69, The Royal Society of Chemistry: London, England (1989). B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor, P. V. Kolinsky, and R. J. Jones, ?. Chem. Soc., Chem. Commun. 1485 (1989).

    Article  CAS  Google Scholar 

  8. For a theoretical (SCF-LCAO MECI formalism) treatment of organometallic NLO materials see: D. R. Kanis, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 112: 8203 (199

    Article  CAS  Google Scholar 

  9. M. E. Wright, Organometallics 9: 853 (1990).

    Article  CAS  Google Scholar 

  10. I. K. Barben, J.Chem. Soc. 1827 (1961).

    Google Scholar 

  11. This work was completed at the Polymer Science Division of the Naval Weapons Center, China Lake, California. Division Head: Dr. Geoff Lindsay.

    Google Scholar 

  12. (a) E. W. Neuse and H. Rosenberg, “Metallocene Polymers,” Marcel Dekker, New York (1970) and references cited therein, (b) For a more recent example see: L. Zhan-Ru, K. Gonsalves, R. W. Lenz, and M. D. Rausch, J. Polym. Sci. A 24: 347 (1986) and references cited therein.

    Google Scholar 

  13. The α-ferrocenylisopropyl carbocation was isolated in ref. 12(b) and a α-(octamethylferrocenyl) methyl carbocation has also been isolated C. Zou and M. S. Wrighton, J.Am. Chem. Soc. 112: 7578 (1990). Furthermore, α-(nonamethyl-ruthenocenyl) methyl carbocation has been generated and utilized to prepare derivatives via nucleophilic reactions (U. Kölle and J. Grub, J. Organomet. Chem. 289: 133 (1985). From these examples it is apparent that substitution at the j-methyl carbon or on the η5-cyclopentadienyl rings are both very important in stabilizing the carbocation. To our knowledge no ferrocenyl carbocation derivatives bearing electron-withdrawing groups have been postulated or observed.

    Article  CAS  Google Scholar 

  14. March, J. “Advanced Organic Chemistry” John Wiley & Sons, New York, 3rd edition (1985) pp 670–671 and references cited therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wright, M.E., Toplikar, E.G. (1992). New Ferrocene Complexes and Polymers for Nonlinear Optical Applications. In: Salamone, J.C., Riffle, J.S. (eds) Advances in New Materials. Contemporary Topics in Polymer Science, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3456-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3456-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6530-3

  • Online ISBN: 978-1-4615-3456-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics