Skip to main content

Factors Regulating Islet Regeneration in the Post-Insulinoma NEDH Rat

  • Chapter
Pancreatic Islet Cell Regeneration and Growth

Abstract

Increases in islet β-cell mass can be induced in a variety of experimental models, and can also occur in the face of metabolic stress, such as obesity, or in certain genetic backgrounds such as the ob/ob mouse. The factors responsible for compensatory proliferation of islet β-cells are not understood, but as this volume attests, investigation in the area is intensifying. Our own work has heretofore utilized the insulinoma-bearing New England Deaconess Hospital (NEDH) rat1 as a model for studying islet regeneration.2,3 Implantation of a solid insulinoma tumor into NEDH rats causes dramatic suppression of the mass and function of their islet β-cells; this suppression is reversed rapidly by surgical removal of the tumor.2,3 We have used this model system to address two specific issues. First, we have investigated the regulation and site of expression of the reg gene, which was cloned by Okamoto and coworkers in 19881 by virtue of its preferential expression in a cDNA library prepared from isolated islets taken from 90% pancreatectomized, nicotinamide-injected rats, an alternate model of β-cell regeneration.4,5 The primary sequence of reg was subsequently shown to be identical to that of the pancreatic stone protein (PSP).6-8 an exocrine gene product whose only known function is to inhibit CaC03 crystal growth. thus helping to prevent chronic calcifying pancreatitis.9-13 Second, we have begun to develop differential screening strategies designed at identifying other genes that might be involved in the expansion of β-cell mass. These initiatives are reviewed herein, and new data on the site of expression of reg/PSP is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.L. Chick, S. Warren, R.N. Chute, A.A. Like, V. Lauris, and K.C. Kitchen, A transplantable insulinoma in the rat, Proc Natl Acad Sci USA. 74:628–32 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. F.J. Bedoya, F.M. Matschinsky, T. Shimizu, J.J. O’Neil, and M.C. Appel, Differential regulation of glucokinase activity in pancreatic islets and liver of the rat, J Biol Chem. 261:10760–64 (1986).

    PubMed  CAS  Google Scholar 

  3. C. Miyaura, L. Chen, M. Appel, T. Alam, L. Inman, S.D. Hughes, J.L. Milburn, R.H. Unger, and C.B. Newgard, Expression of reg/pSP, a pancreatic exocrine gene: relationship to changes in islet β-Cell mass, Mol Endocrinol. 5:226–34 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, and H. Okamoto, A novel gene activated in regenerating islets, J BioL Chem. 263:2111–14 (1988).

    PubMed  CAS  Google Scholar 

  5. H. Okamoto, Molecular basis of experimental diabetes: degeneration, oncogenesis, and regeneration of pancreatic β-cells of islets of langerhans, Bioessays. 2:15–21 (1985).

    Article  CAS  Google Scholar 

  6. T.A. Stewart, The Human reg Gene Encodes Pancreatic Stone Protein, Biochem J. 260:622–23 (1989).

    PubMed  CAS  Google Scholar 

  7. S. Rouquier, D. Giorgi, J. Iovanna, and J-C. Dagorn, Sequence similarity between the reg transcript and pancreatic stone protein mRNA, Biochem J. 264:621–24 (1989).

    PubMed  CAS  Google Scholar 

  8. T. Watanabe, H. Yonekura, K. Terazono, H. Yamamoto, and H. Okamoto, Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues: the reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene, J Biol Chem. 265:7432–39 (1990).

    PubMed  CAS  Google Scholar 

  9. G. Montalto, J. Bonicel, L. Multigner, M. Rovery, H. Sarles, and A. DeCaro, Partial amino acid sequence of human pancreatic stone protein, a novel pancreatic secretory protein, Biochem J. 238:227–32 (1986).

    PubMed  CAS  Google Scholar 

  10. A. DeCaro, L. Multigner, H. Lafont, D. Lombardo, and H. Sarles, The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth, Biochem J. 222:669–77 (1984).

    Google Scholar 

  11. P. Lechene de la Porte, A. DeCaro, M. Amouric, and H. Sarles, Localisation immunocytochemique dela proteine majoritaire des calculs pancreatiques humains, La Nouv Presse Med. 10:3851 (1981).

    Google Scholar 

  12. D. Giorgi, J-P Bernard, A. DeCaro, L. Multigner, R. Lapointe, H. Sarles, and J.C. Dagorn, Pancreatic stone protein. I. Evidence that it is encoded by a pancreatic ribonucleic acid, Gastroenterology. 89:381–86 (1985).

    PubMed  CAS  Google Scholar 

  13. D. Giorgi, J-P Bernard, S. Rouquier, J. Iovanna, H. Sarles, and J-C Dagorn, Secretory pancreatic stone protein messenger RNA: nucleotide sequence and expression in chronic calcifying pancreatitis, J Clin Invest 84:100–06 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. M.C. Appel, unpublished data

    Google Scholar 

  15. L. Chen, I. Komiya, L. Inman, J. O’Neill, M. Appel, T. Alam, and R.H. Unger, Effects of hypoglycemia and prolonged fasting on insulin and glucagon gene expression, J Clin Invest. 84:711–14 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. L. Chen, T. Alam, J.H. Johnson, S. Hughes, C.B. Newgard, and R.H. Unger, Regulation of β-cell glucose transporter expression, Proc Natl Acad Sci USA. 87:4088–92 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. T.E. Peterson, The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins, FEBS Lett 231:51–53 (1988).

    Article  Google Scholar 

  18. L. Palthy, Homology of pancreatic stone protein with animallectins, Biochem J. 253:309–11 (1988).

    Google Scholar 

  19. Miyaura, C., Sestak, A., Appel, M. C., O’Neil, J., and Newgard, C. B., manuscript in preparation.

    Google Scholar 

  20. C. B. Newgard, S. Hughes, L. Chen, H. Okamoto, and J.L. Milburn, The reg gene is preferentially expressed in the exocrine pancreas during islet regeneration (abstract), Diabetes. 38:49A (1989).

    Article  Google Scholar 

  21. K. Terazono, Y. Uchiyama, M. Ide, T. Watanabe, H. Yonekura, H. Yamamoto, and H. Okamoto, Expression of reg protein in rat renerating islets and its co-localization in the beta cell secretory granules, Diabetologia. 33:250–25 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. M.A. Frohman, M.K. Dush, and G.R. Martin, Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer, Proc Natl Acad Sci USA. 85:8998–9002 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, L. et al. (1992). Factors Regulating Islet Regeneration in the Post-Insulinoma NEDH Rat. In: Vinik, A.I., Sirman, D.J. (eds) Pancreatic Islet Cell Regeneration and Growth. Advances in Experimental Medicine and Biology, vol 321. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3448-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3448-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6526-6

  • Online ISBN: 978-1-4615-3448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics