Skip to main content

The Physiological Stop Pathway: Target Regulation of Axonal Growth

  • Chapter
Pancreatic Islet Cell Regeneration and Growth

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 321))

  • 76 Accesses

Abstract

Axonal growth or regeneration is dependent upon a combination of intrinsic neuronal and extrinsic environmental factors. The interplay of these factors determines whether an axon grows, reaches an appropriate target and forms functional connections with that target. While many studies have focused on axonal growth and the factors necessary for that growth, relatively fewer studies, until recently, have addressed the question of how axons stop growing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. Liuzzi and R.I. Lasek, Astrocytes block axonal regeneration by activating the physiological stop pathway, Science. 237:642–45 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. J.B. Le Beau, this volume.

    Google Scholar 

  3. B. Grafstein and I.G. McQuarrie, Role of the nerve cell body in axonal regeneration. in: “Neuronal Plasticity”, C.W. Cotman (ed) Raven Press, New York pp.155–95 (1978).

    Google Scholar 

  4. J. Wong and M.M. Oblinger, NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons, J Neurosci. 11:543–52 (1991).

    PubMed  CAS  Google Scholar 

  5. P.N. Hoffman, J.W. Griffin, and D.L. Price, Control of axonal caliber by neurofilament transport, J Cell Biol. 99:705–14 (1984)

    Article  PubMed  CAS  Google Scholar 

  6. P.N. Hoffman, G.W. Thompson, J.W. Griffin, and D.L. Price, Changes in neurofilament transport coincide temporally with alteration in the caliber ofaxons in regenerating motor fiber, J Cell Biol. 101: 1332–40 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. P.N. Hoffman, D.W. Cleveland, J.W. Griffin, P.W. Landes, N.J. Cowan, and D.L. Price, Neurofilament gene expression: A major determinant of axonal caliber, Proc Natl Acad Sci USA. 84:3472–76 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. M.M. Oblinger and R.J. Lasek, Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells, J Neurosci. 8: 1747–58 (1988).

    PubMed  CAS  Google Scholar 

  9. S.G. Greenberg and R.J. Lasek, Neurofilament protein synthesis in DRG neurons decreases more after peripheral axotomy than after central axotomy, J Neurosci. 8: 1739–46 (1988).

    PubMed  CAS  Google Scholar 

  10. P.C. Letourneau, Interactions of growing axons with fibronectin and laminin, in: “The Current Status of Peripheral Nerve Regeneration”, T. Gordon, R.B. Stein, and P.A. Smith (eds), Alan R. Liss, Inc., New York, pp. 99–110 (1988).

    Google Scholar 

  11. R. Heumann, S. Korschung, C. Bandtlow, and H. Thoenen, Changes of nerve growth factor synthesis in non-neuronal cells in response to sciatic nerve transection, J Cell Biol. 104:1623–31 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. P. J. Reier and J.D. Houle, The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair, in: “Functional Recovery in Neurological Diseases. Advances in Neurology”. v. 47 S.G. Waxman (ed), Raven Press, New York, pp. 87–138 (1988).

    Google Scholar 

  13. F.J. Liuzzi, Proteolysis is a critical step in the physiological stop pathway: mechanisms involved in the blockade of axonal regeneration by mammalian astrocytes, Brain Res 512:277–83 (1990a).

    Article  PubMed  CAS  Google Scholar 

  14. F.J. Liuzzi and B. Tedeschi, The effects of physiological stop pathway activation at the dorsal root transitional zone on NF gene expression in DRG neuron, Soc Neurosci Abst 15:707 (1990).

    Google Scholar 

  15. FJ. Liuzzi, Regulation of axonal growth through the dorsal root transitional zone in adult mammals. in: Advances in Neural Regeneration Research. v. 60, Sell, FJ. (ed), Wiley-Liss, New York, pp.225–36 (1990b).

    Google Scholar 

  16. B.I. Roots, Neurofilament accumulation induced in synapses by leupeptin, Science 221:971–72 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. F. Liuzzi and B. Tedeschi, in preparation.

    Google Scholar 

  18. D. Bozyczko and A.F. Horwitz AF (1986) The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci 6:1241–1251

    PubMed  CAS  Google Scholar 

  19. B. Toyota, S. Carbonetto, and S. David, A dual laminin/collagen receptor acts in peripheral nerve regeneration, Proc Natl Acad Sci USA 87:1319–22 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. A. Bignami, N.H. Chi and D. Dahl, Regenerating dorsal roots and the nerve entry zone: An immunofluorescence study with neurofilament and laminin antisera, Exp Neurol. 85:426–436 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. F.J. Liuzzi, unpublished observations.

    Google Scholar 

  22. D.A. Aquino, R.U. Margolis, and R.K. Margolis, Immunocytochemicallocalization of a chondroitin sulfate proteoglycan in nervous tissue. Adult brain, retina and peripheral nerve, J Cell Biol. 99:1117–1129 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. D.M. Snow, V. Lemmon, D.A. Carrino, A.I. Caplan, and I. Silver, Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro, Exp Neurol 109:111–30 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. I.A. Hendry, K. Stockkel, H. Thoenen, and L.L. Iverson, Retrograde axonal transport of nerve growth factor, Brain Res 68:103–21 (1974).

    Article  PubMed  CAS  Google Scholar 

  25. E.M. Johnson, M. Taniuchi, H.B. Clark, J.E. Springer, S. Koh, M.W. Tayrien, and R. Loy, Demonstration of retrograde transport of nerve growth factor receptor in the peripheral an central nervous system, J Neurosci 7:923–29 (1987).

    PubMed  CAS  Google Scholar 

  26. R.M. Lindsay and A.J. Hamar, Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons, Nature 337:362–64 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. J. Wong and M.M. Oblinger, A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons, J Neurosci 10:2215–22 (1990).

    PubMed  CAS  Google Scholar 

  28. V. Lee, J.Q. Trajanowski, and W.W. Schleapfer, Induction of neurofilament triplet in PC12 cells by nerve growth factor, Brain Res 238:169–80 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. M.H. Lindenbaum, S. Carbonetto, and W.E. Mushyski, Nerve growth factor enhances the synthesis, phosphorylation, and metabolic stability of neurofilament proteins in PC 12 cells, J Biological Chem 262:605–10 (1987).

    CAS  Google Scholar 

  30. V.M.K. Verge, W. Tetz1aff, M.A. Bisby, and P.M. Richardson, Influence of nerve growth factor on neurofilament gene expression in mature primary sensory neurons, J Neurosci 10:2018–25 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liuzzi, F.J. (1992). The Physiological Stop Pathway: Target Regulation of Axonal Growth. In: Vinik, A.I., Sirman, D.J. (eds) Pancreatic Islet Cell Regeneration and Growth. Advances in Experimental Medicine and Biology, vol 321. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3448-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3448-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6526-6

  • Online ISBN: 978-1-4615-3448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics