Skip to main content

Role of p21ras in Hormone Signalling and Cell Growth/Transformation

  • Chapter
Pancreatic Islet Cell Regeneration and Growth

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 321))

  • 76 Accesses

Abstract

This brief article will focus on the possible role of p21ras in signal transduction. There is a plethora of conflicting information as to its function in cell signaling. Earlier studies suggested that p21ras acted to couple certain membrane receptors to phospholipase C (PLC), which when activated, caused an elevation in inositol phosphates and a subsequent increase in intracellular free calcium ([Ca2+]i). However, more recent studies do not support this notion,1 and suggest that the role of p21ras maybe to alter transcription of transforming genes, thereby coupling hormone receptors to the activity of PLC. Evidence supporting this new concept will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.G. Macara, Oncogenes and cellular signal transduction, Physiological Revs 69:797–820 (1989).

    CAS  Google Scholar 

  2. M.J. Berridge and R.F. Irvine, Nature 345:142–52 (1985).

    Google Scholar 

  3. I.H. Exton and P.F. Blackmore, Calcium-mediated hormonal responses in: “Endocrinology”, L.J. DeGroot (ed.), W.B. Saunders Co., pp. 58–74 (1989).

    Google Scholar 

  4. T. Furuichi, S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda, and K. Mikoshiba, Primary structure and functional expression of the inositol 1,4,5-triphophate-binding protein PLLOO, Nature 342:32–8 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Nishizuka, Studies and perspectives of protein kinase C, Science 233:305–12 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. I.H. Exton, Signalling through phosphatidylcholine breakdown, J Biol Chem 265:1–4 (1990).

    PubMed  CAS  Google Scholar 

  7. S.G. Rhee, Inositol phospholipid-specific phospholipase C: interaction of the γ1 isoform with tyrosine kinase, Trends Biochem Sci 16:297–301 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. W J. Wasilenko, D.M. Payne, D.L. Fitzgerald, and M.J. Weber, Phosphorylation and activation of epidermal growth factor receptors in cells transformed by the src oncogene, Mol Cell Biol 11:309–21, 1991.

    PubMed  CAS  Google Scholar 

  9. A.G. Gilman, G proteins: transducers of receptor-generated signals, Annu Rev Biochem 56:615–49 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. W.T. Tang and A.G. Gilman, Type-specific regulation of adenylyl cyclase by G protein βγ subunits, Science 254:1500–03 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. M. Strathmann and M.I. Simon, G protein diversity: A distinct class of α subunits is present in vertebrates and inverterates, Proc Natl Acad Sci USA 87:9113–17 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. S.J. Taylor and I.H. Exton, Two alpha subunits of the Gq class of G proteins stimulate phosphoinositide phospholipase c-bl activity, FEBS Lett 286:214–6 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. S.B. Bocckino, P.F. Blackmore, P.B. Wilson, and I.H. Exton, Phosphatidate accumulation in hormonetreated hepatocytes via a phospholipase D mechanism J. Biol Chem., 262:15309–15 (1987).

    PubMed  CAS  Google Scholar 

  14. M.J. Berridge, The molecular basis of communication within the cell, Scientific American. 253:142–52 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. R.J.A. Grand and D. Owen, The biochemistry of rasp21, Biochem J 279:609–31 (1991).

    PubMed  CAS  Google Scholar 

  16. C.J. Marshall, The ras oncogenes, J Cell Sci Suppl. 10:157–69 (1988).

    PubMed  CAS  Google Scholar 

  17. A. Hall, Ras and GAP-Who’s controlling whom?, Cell. 61:921–23 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. L.C. Cantley, K.R. Auger, C. Carpenter, B. Duckworth, A. Graziani, Kapeller, and S. Soltoff, Oncogenes and signal transduction, Cell 64:281–302 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. A. Yatani, K. Okabe, P. Polakis, R. Halenbeck, F. McCormick, and A.M. Brown, Ras p21 and GAP inhibit coupling of muscarinic receptors to alrial K+ channels, Cell 61:709–76 (1990).

    Article  Google Scholar 

  20. A. Hall, The cellular functions of small GTP-binding proteins, Science 249:635–40 (1990).

    Google Scholar 

  21. H.F. Paterson, A.J. Self, M.D. Garrett, I. Just, K. Aktories, and A. Hall, Microinjection of recombinant p21rho induces rapid changes in cell morphology, J Cell Biol 111:1001–07 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. G. Parries, R. Hoebel, and E. Racker, Opposing effects of a ras oncogene on growth factor stimulated phosphoinositide hydrolysis-Desansitisation to platelet-derived growth factor and enhanced sensitivity to bradykinin, Proc Natl Acad Sci USA 84:2648–52 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. S.G. Oakes, P.F. Blackmore, and K.D. Somers, K-ras transformed BALB-3T3 cells express HI receptors coupled to increases in intracellular (Ca2+ not found in normal or H-ras transformed cells, FASEB J 4:A499 (1990).

    Google Scholar 

  24. S.G. Oakes, K.D. Somers, and P.F. Blackmore, Kirsten-ras transformed normal mt kidney (NRK) cells lose vasopressin receptors, FASEB J 4:A2987 (1991).

    Google Scholar 

  25. C. Wasylyk, J.C. Imler, J. Perez-Mutul and B. Wasylyk, The c-Ha-ras oncogene and a tumor promoter activates the polyoma vimus enhancer, Cell 48:525–34 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. C. Wasylyk, J.C. Imler, and B. Wasylyk, Transforming but not immortalizing oncogenes activate the transcription factor PEA-1, EMBO J 7:2475–83 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blackmore, P.F. (1992). Role of p21ras in Hormone Signalling and Cell Growth/Transformation. In: Vinik, A.I., Sirman, D.J. (eds) Pancreatic Islet Cell Regeneration and Growth. Advances in Experimental Medicine and Biology, vol 321. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3448-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3448-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6526-6

  • Online ISBN: 978-1-4615-3448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics