Skip to main content

The Concept of Soliton-Carrier Collective Variable for Proton Transfer in Extended Hydrogen-Bonded Systems: Overview

  • Chapter
Proton Transfer in Hydrogen-Bonded Systems

Part of the book series: NATO ASI Series ((NSSB,volume 291))

Abstract

It seems now to be the right time to take a overlook at the application of the concept of soliton1,2 in the theory of hydrogen bonding, and the theory of anomalous proton conductivity in liquid water and ice particularly. The important progress continues to be made in this area at a substantial pace. The hot example is just these Proceedings. A number of problems which are nearly as old as the object under study itself (e.g., liquid water) remains open, and the new problems continue to arise and develop. On the other hand, this area is now about ten years old, and already many problems have been solved and the key to the general theory of proton transfer we guess has been posed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Baroni, F. Esposito, C. J. Magee, and A. C. Scott, Riv. Nuovo Cim., 1: 227 (1971); A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE, 61: 1443 (1972); A. R. Bishop, and T. Schneider, eds., “Solitons in Condensed Matter Physics”,Springer, Berlin, (1978).

    Google Scholar 

  2. S. E. Trullinger, V. E. Zakharov, and V. L. Pokrovsky “Solitons”, North-Holland, Amsterdam, (1986); A. Bishop, D. Campbell, P. Kumar, and S. Trullinger “Nonlinearity in Condensed Matter”, Springer, Berlin, (1987).

    Google Scholar 

  3. S. Yomosa, J. Phys. Soc. Japan, 51: 3318 (1982).

    Article  CAS  Google Scholar 

  4. Y. Kashimori, T. Kikuchi, and K. Nishimoto, J. Chem Phys. 77: 1904 (1982).

    Google Scholar 

  5. V. Ya. Antonchenko, A. S. Davydov, and A. V. Zolotariuk, Phys. Stat. Sol. (b), 115: 631 (1983).

    Article  CAS  Google Scholar 

  6. A. S. Davydov, “Solitons in Molecular Systems”,2nd edition, Kluwer, Dordrecht, (1991).

    Book  Google Scholar 

  7. Y. Mardchal, La Recherche,20: 482 (1989).

    Google Scholar 

  8. J.D. Bernal, and R. H. Fowler, J. Chem. Phys., 1: 515 (1933); L. Pauling, J. Am. Chem. Soc., 57: 2860 (1935).

    Google Scholar 

  9. H. S. Frank and W.-Y. Wen, Disc. Faraday Soc., 23: 72 (1957).

    Article  Google Scholar 

  10. D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys., 53: 4544 (1970); J. E. Del Bene and H. A. Scheraga, Ibid., 58: 5296 (1973); E. Clementi, “Determination of Liquid Water Structure. Coordination Numbers for Ions and Solvation for Biological Molecules”,Lecture Notes in Chemistry, vol. 2 Springer-Verlag, Berlin (1976).

    Google Scholar 

  11. E. S. Campbell and M. Mezei, J. Chem. Phys., 67: 2338 (1977); Mol. Phys., 41: 883 (1980); E. S. Campbell and D. Belford, Thoret. Chim. Acta, 61: 295 (1982).

    Google Scholar 

  12. G. S. Pimentel and A. L. Mac Clellan, “The Hydrogen Bond”, Freeman, San Francisco (1960).

    Google Scholar 

  13. E. S. Kryachko, Int. J. Quantum Chem., 30: 495 (1986).

    Article  CAS  Google Scholar 

  14. S. Scheiner, Acc. Chem. Res.,18: 174 (1985).

    Article  CAS  Google Scholar 

  15. S. Scheiner and J. F. Nagle, J. Phys. Chem.,87: 4267 (1983).

    Article  CAS  Google Scholar 

  16. R. Lochmann and Th. Weller, Int. J. Quantum Chem., 25: 1061 (1984).

    Article  CAS  Google Scholar 

  17. A. Karpfen and P. Schuster, Can. J. Chem.,63: 809 (1985).

    Article  CAS  Google Scholar 

  18. N. Bjerrum, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd., 27: 3 (1953); Science 115: 385 (1952).

    Google Scholar 

  19. D. Eisenberg and W. Kauzmann, “The Structure and Properties of Water”,Oxford University Press, New York (1969).

    Google Scholar 

  20. J. D. Dunitz, Nature,197: 860 (1963).

    Article  CAS  Google Scholar 

  21. N. V. Cohan, M. Cotti, J. V. Iribarne, and M. Weissmann, Trans. Faraday Soc.,58: 490 (1962).

    Article  CAS  Google Scholar 

  22. D. Eisenberg and C. A. Coulson, Nature,199: 368 (1963).

    Article  CAS  Google Scholar 

  23. R. K. Chan, D. W. Davidson, and E. Whalley, J. Chem. Phys.,43: 2376 (1965).

    Article  CAS  Google Scholar 

  24. E. S. Kryachko, Chem. Phys. Lett.,141: 346 (1987).

    Article  CAS  Google Scholar 

  25. O. E. Yanovitskii and E. S. KryachkoPhys. Stat. Sol. (b) 147: 69 (1988).

    Article  CAS  Google Scholar 

  26. E. S. Kryachko, Solid State Commun., 65: 1609 (1988).

    Article  CAS  Google Scholar 

  27. St. Pnevmatikos, N. Flytzanis, and A. R. Bishop, J. Phys. C: Solid State Phys., 20: 2829 (1987).

    Article  Google Scholar 

  28. D. D. Klug and E. Whalley, J. Chem. Phys.,83: 925 (1985).

    Article  CAS  Google Scholar 

  29. D. D. Klug and E. Whalley, J. Chem. Phys.,81: 1220 (1985).

    Article  Google Scholar 

  30. W. B. Collier, G. Ritzhaupt, and J. P. Devlin, J. Phys. Chem.,88: 363 (1984).

    Article  CAS  Google Scholar 

  31. P. A. Gigudre and M. Pigeon-Gosselin, J. Raman Spectr., 17: 341 (1986); P. A. Gigudre, J. Chem. Phys., 87: 4835 (1987).

    Google Scholar 

  32. G. E. Walrafen, M. S. Hokmabadi, and Y. C. Chu, Vibrational and Collision-Induced Raman Scattering from Water and Aqueous Solutions,In: “Hydrogen-Bonded Liquids”, J.C. Dore and J. Teixeira, eds., Kluwer, Dordrecht (1991).

    Google Scholar 

  33. M. K. Ali and R. L. Somorjai, J. Phys. A: Math. Gen., 12: 2291 (1979).

    Article  Google Scholar 

  34. P. Schuster, G. Zundel, and C. Sandorfy, eds., “The Hydrogen Bond: Recent Developments in Theory and Experiments”, North Holland, Amsterdam (1976).

    Google Scholar 

  35. E. R. Lippincott, and R. Schroeder, J. Chem. Phys., 23: 1099 (1955); G. R. Anderson, and E. R. Lippincott, Ibid.,55: 4077 (1972).

    Google Scholar 

  36. E. S. Kryachko and V. P. Sokhan, Proc. Roy. Soc. London (in press).

    Google Scholar 

  37. E. S. Kryachko, Chem. Phys.,143: 359 (1990).

    Article  CAS  Google Scholar 

  38. E. S. Kryachko, Recent Developments in Solitonic Model of Proton Transfer in Quasi-One-Dimensional Infinite Hydrogen-Bonded Systems“, In: ”Electron and Proton Transfer in Chemistry and Biology“, A. Milller et al., eds., Elsevier, Amsterdam (1991).

    Google Scholar 

  39. E. S. Kryachko, M. Eckert, and G. Zundel, J. Mol. Str. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kryachko, E.S., Sokhan, V.P. (1992). The Concept of Soliton-Carrier Collective Variable for Proton Transfer in Extended Hydrogen-Bonded Systems: Overview. In: Bountis, T. (eds) Proton Transfer in Hydrogen-Bonded Systems. NATO ASI Series, vol 291. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3444-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3444-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6524-2

  • Online ISBN: 978-1-4615-3444-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics