Skip to main content

Light-Triggered Opening and Closing of an Hydrophobic Gate Controls Vectorial Proton Transfer Across Bacteriorhodopsin

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 291))

Abstract

Bacteriorhodopsin (BR) in the purple membrane (PM) of Halobacterium halobium is considered as a prototypic membrane protein. This integral membrane protein is the only protein species of the purple membrane and functions as a light-energized proton pump1. The protein consists of a single polypeptide chain of 248 amino acids (Mr 26486 Da) traversing the lipid bilayer (about 8 lipids per BR) in seven α-helical segments (Fig. 1; see also Fig. 1 of ref. 2, this book). Photons are absorbed by the chromophore retinal, which is covalently linked via a protonated Schiff’s base to lysine-216 of the protein moiety. The antenna retinal is responsible for the characteristic purple colour of BR with its absorption maximum at 568 nm in the ground state. Upon photon absorption, BR undergoes a cyclic photoreaction with an overall half-time of about 10 ms via a series of at least five intermediates of different colour with rise times of femto-to milliseconds3,4. During the photochemical cycle one5,6,7 proton is vectorially translocated across BR, causing the formation of an electrochemical proton gradient. (Further information is reviewed elsewhere2,4,8). This light-generated proton electrochemical potential across the energy-transducing membranes is utilized by the halobacteria as a driving force for ATP synthesis, active transport processes, and rotation of flagella. It is quite obvious that bacteriorhodopsin is a very attractive system for the investigation of molecular steps in light-driven vectoral H+-translocation. Bacteriorhodopsin is one of the most promising candidates to elucidate the link between the structure of a membrane transport protein, its dynamics, and the function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oesterhelt, D. and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70: 2853–2857.

    Article  CAS  Google Scholar 

  2. Heberle, J. and Dencher, N.A., Proton transfer in the light-harvesting protein bacteriorhodopsin: An investigation with optical pH-indicators. This book.

    Google Scholar 

  3. Dencher, N.A. and Wilms, M (1975) Flash photometric experiments on the photochemcal cycle of bacteriorhodopsin. Biophys Struct Mechanism 1: 259–271.

    Article  CAS  Google Scholar 

  4. Oesterhelt, D. and Tittor, J. (1989) Two pumps, one principle: Light-driven ion transport in Halobacteria. TIBS 14: 57–61.

    CAS  Google Scholar 

  5. Drachev, L.A., Kaulen, A.D. and Skulachev, V.P. (1984) Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. FEBS Lett. 178: 331–335.

    Article  CAS  Google Scholar 

  6. Grzesiek, S. and Dencher, N.A. (1986) Time-course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. FEBS Lett. 208: 337–342.

    Article  CAS  Google Scholar 

  7. Grzesiek, S. and Dencher, N.A. (1988) Monomeric and aggregated bacteriorhodopsin: Single-turnover proton transport stoichiometry and photochemistry. Proc. Natl. Acad. Sci. USA 85: 9509–9513.

    Article  CAS  Google Scholar 

  8. Dencher, N.A. (1983) The five retinal-protein pigments of halobacteria: Bacteriorhodopsin, Halorhodopsin, P 565, P 370, and slow-cycling rhodopsin. Photochem Photobiol 38: 753–767.

    Article  CAS  Google Scholar 

  9. Henderson, R., J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann and K.H. Downing (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.

    Article  CAS  Google Scholar 

  10. Dencher, N.A., D. Dresselhaus, G. Maret, G. Papadopoulos, G. Zaccai and G. Buldt (1988) Light-induced structural changes in bacteriorhodopsin and topography of water molecules in the purple membrane studied by neutron diffraction and magnetic birefringence. Proceedings of the Yamada Conference XXI,109–115.

    Google Scholar 

  11. Dencher, N.A., D. Dresselhaus, G. Zaccai and G. Biildt (1989) Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Proc. Natl. Acad. Sci. USA 86: 7876–7879.

    Article  CAS  Google Scholar 

  12. Koch, M.H.J., N.A. Dencher, D. Oesterhelt, H.-J. Plöhn, G. Rapp and G. Büldt (1991) Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J. 10: 521–526.

    CAS  Google Scholar 

  13. Lewis, A., J. Spoonhower, R.A. Bogomolni, R.H. Lozier and W. Stoeckenius (1974) Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 71: 4462–4466.

    Article  CAS  Google Scholar 

  14. Konishi, T. and L. Packer (1978) A proton channel in bacteriorhodopsin. FEBS L. 89: 333–336.

    Article  CAS  Google Scholar 

  15. Dencher, N.A., P.A. Burghaus and S. Grzesiek (1986) Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Meth. Enzymol. 127: 746–760.

    Article  CAS  Google Scholar 

  16. Burghaus, P.A. and N.A. Dencher (1989) The chromophore retinal hinders passive proton/hydroxide ion translocation through bacteriorhodopsin. Arch. Biochem. Biophys. 275: 395–409.

    Article  CAS  Google Scholar 

  17. Büldt, G., K. Konno, K. Nakanishi, H.-J. Plohn, B.N. Rao and N.A. Dencher (1991) Heavy-atom labelled retinal analogues located in bacteriorhodopsin by X-ray diffraction. Photochem. Photobiol. 54: in press.

    Google Scholar 

  18. Jubb, J.S., D.L. Worcester, H.L. Crespi and G. Zaccai (1984) Retinal location in purple membrane of Halobacterium halobium: a neutron diffraction study of membranes labelled in vivo with deuterated retinal. EMBO J. 3: 1455–1461.

    CAS  Google Scholar 

  19. Heyn, M.P., J. Westerhausen, I. Wallat and F. Seiff (1988) High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 85: 2146–2150.

    Article  CAS  Google Scholar 

  20. Hauß, T., Heyn, M.P., Büldt, G. and Dencher, N.A. (1991) Movement of retinal in bacteriorhodopsin during the BR570 to M411 transition: A neutron diffraction study. Jahrestagung der Deutschen Gesellschaft für Biophysik,Homburg, abstract P32.

    Google Scholar 

  21. Hauß, T., Grzesiek, S., Otto, H., Westerhausen, J. and Heyn, M.P. (1990) Transmembrane location of bacteriorhodopsin by neutron diffraction. Biochemistry 29: 4904–4913.

    Article  Google Scholar 

  22. Korenstein, R. and Hess, B. (1977) Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 270: 184–186.

    Article  CAS  Google Scholar 

  23. Varo, G. and Keszthelyi, L. (1983) Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophys. J. 43: 47–51.

    Article  CAS  Google Scholar 

  24. Papadopoulos, G., N.A. Dencher, G. Zaccai and G. Büldt (1990) Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. J. Mol. Biol. 214, 15–19.

    Article  CAS  Google Scholar 

  25. Dencher, N.A., Heberle, J., Bark, C., Koch, M.H.J., Rapp, G., Oesterhelt, D., Bartels, K. and Büldt, G. (1991) Proton translocation and conformational changes during the bacteriorhodopsin photocycle: Time-resolved studies with membrane-bound optical probes and X-ray diffraction. Photochem. Photobiol. 54: in press.

    Google Scholar 

  26. Dencher, N.A., G. Papadopoulos, D. Dresselhaus and G. Büldt (1990) Light-and dark-adapted bacteriorhodopsin, a time-resolved neutron diffraction study. Biochim. Biophys. Acta 1026: 51–56.

    Article  CAS  Google Scholar 

  27. Dencher, N.A. and Heyn M.P. (1979) Bacteriorhodopsin monomers pump protons. FEBS Lett 108: 307–310.

    Article  CAS  Google Scholar 

  28. Grzesiek, S. and N.A. Dencher (1986) Dependency of pH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids. Biophys. J. 50: 265–276.

    Article  CAS  Google Scholar 

  29. Heberle, J. and N.A. Dencher (1990) Bacteriorhodopsin in ice: Accelerated proton transfer from the purple membrane surface. FEBS Lett. 277: 277–280.

    Article  CAS  Google Scholar 

  30. Tittor, J. (1991) A new view of an old pump: bacteriorhodopsin. Current Opinion in Structural Biology 1: 534–538.

    Article  CAS  Google Scholar 

  31. Höltje, M. and Höltje, H.-D. (1991) Molecular modelling study on the negative inotropic potencies of 1,4-dihydropyridines. Pharm. Pharmacol. Lett. 1: 19–13.

    Google Scholar 

  32. Mathies, R.A., Lin, S.W., Ames, J.B. and Pollard, W.T. (1991) From ferntoseconds to biology. Annu. Rev. Biophys. Biophys. Chem. 20: 491–518.

    Article  CAS  Google Scholar 

  33. Hildebrandt, P. and Stockburger, M. (1984). Role of water in bacteriorhodopsin’s chromophore: resonance Raman study. Biochemistry 23: 5539–5548.

    Article  CAS  Google Scholar 

  34. Nagle, J. F. and Tristram-Nagle, S. (1983). Hydrogen bonded chain mechanism for proton conduction and proton pumping. J. Membr. Biol. 74: 1–14.

    Article  CAS  Google Scholar 

  35. Deamer, D. W. & Nichols, J. W. (1989). Proton flux mechanisms in model and biological membranes. J. Membrane Biol. 107: 91–103.

    Article  CAS  Google Scholar 

  36. Scheiner, S. and Hillenbrand, E.A. (1985) Modification of pK values caused by change in H-bond geometry. Proc. Natl. Acad. Sci. USA 82: 2741–2745.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dencher, N.A., Büldt, G., Heberle, J., Höltje, HD., Höltje, M. (1992). Light-Triggered Opening and Closing of an Hydrophobic Gate Controls Vectorial Proton Transfer Across Bacteriorhodopsin. In: Bountis, T. (eds) Proton Transfer in Hydrogen-Bonded Systems. NATO ASI Series, vol 291. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3444-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3444-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6524-2

  • Online ISBN: 978-1-4615-3444-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics