Skip to main content

Abstract

Of the different organic anions which are often present a high concentrations in plants, malate plays a central role. Plants exhibiting crassulacean acid metabolism (CAM) fix CO2 with the enzyme phosphoenolpyruvate carboxylase during the night and accumulate large amounts of malic acid. During the light period, malic acid is decarboxylated and the released CO2 is fixed in the Calvin cycle. C4 plants fix CO2 in the mesophyll in a similar reaction during the day, as CAM in the dark. In these plants, malate is transferred to the bundle sheaths, decarboxylated and the CO2 fixed in the photosynthetic reaction. This reaction enables the plant to fix CO2 more efficiently, since the affinity of phosphoenolpyruvate carboxylase to HCO3 - is much higher than that of ribulose-1,5- diphosphate carboxylase to CO2. Diurnal fluctuations of malate can also be observed in C3 plants. However, in these plants malate is accumulated during the day and used as an energy source for respiration in the dark (Winter, Usuda, Tsuzuki, Schmitt, Edwards, Thomas, and Evert, 1982; Gerhardt, Stitt, and Heldt, 1987). Malate metabolism and accumulation also play an important role during the opening of stomata since, in most plants, malate is used for balancing K+ (Schnabl and Kottmeier, 1984). Other prominent organic acids often accumulated at high concentrations in plants include shikimic acid, which is present mainly in gymnosperms and some woody angiosperms, as well as gallic, oxalic and citric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrhein, N., Schneebeck, D., Skorupka, H., Tophof, S., and Stöckigt, J., 1981. Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid in higher plants. Naturwissenschaften, 68, 619–620.

    Article  CAS  Google Scholar 

  • Blom-Zandstra, M., Koot, H.T.M., Hattum, J., and Borstlap, A.C., 1990. Interactions of uptake of malate and nitrate into isolated vacuoles from lettuce leaves. Planta, 183, 10–16.

    Google Scholar 

  • Bouyssou, H., Canut, H., and Marigo, G., 1990. A reversible carrier mediates the transport of malate at the tonoplast of Catharanthus roseus ells. FEBS Letters, 275, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Bouzayen, M., Latche, A., Alibert, G., and Pech, J.C., 1989. Carrier mediated uptake of 1(malonylamino)cyclopropane-l-carboxylic acid in vacuoles isolated from Catharanthus roseus cells. Plant Physiology, 91, 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  • Buser, C., and Matile, P., 1977. Malic acid in vacuoles isolated from Bryophyllum leaf cells. Zeitschrifl fiir Pflanzenphysiologie, 82, 462–466.

    CAS  Google Scholar 

  • Buser-Sutter, C., Wiemken, A., and Matile, P., 1981. A malic acid permease in isolated vacuoles of a crassulacean acid metabolism plant. Plant Physiology, 69, 456–459.

    Article  Google Scholar 

  • Coyaud, L., Kurkdjian, A., Kado, R., and Hedrich, R., 1987. Ion channels and ATP-driven pumps involved in ion transport across the tonoplast of sugar beet vacuoles. Biochimica et Biophysica Acta, 902, 263–268.

    Article  CAS  Google Scholar 

  • Flügge, U.I., and Heldt, H.W., 1977. Specific labelling of a protein involved in phosphate transport of chloroplasts by pyridoxal-5-phosphate. FEBS Letters, 82, 29–33.

    Article  PubMed  Google Scholar 

  • Gerhardt, R., Sti1t, M., and Heldt, H.W., 1987. Subcellular metabolite levels in spinach leaves. Plant Physiology, 83, 399–407.

    Article  PubMed  CAS  Google Scholar 

  • Grob, K., and Matile, P., 1980. Compartmentation of ascorbic acid in vacuoles of horseradish root cells. Note on vacuolar peroxidase. Zeitschrii flir Pflanzenphysiologie, 98, 235–243.

    CAS  Google Scholar 

  • Hedrich, R., Flügge, U.I., and Fernandez, J.M., 1986. Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Letters, 204, 228–232.

    Article  CAS  Google Scholar 

  • Holländer-Czytko, H., and Amrhein, N., 1983. Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors. Plant Science Letters, 29, 89–96.

    Article  Google Scholar 

  • Kaiser, G., Martinoia, E., and Wiemken, A., 1982. Rapid appearance of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method. Zeitschrh far Pflanzenphysiologie, 107, 103–113.

    CAS  Google Scholar 

  • Kaiser, G., Martinoia, E., Schröppel-Meier, G., and Heber, U., 1989. Active transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. Journal of Plant Physiology, 133, 756–763.

    Article  CAS  Google Scholar 

  • Kaiser, W., and Förster, J., 1989. Low CO, prevents nitrate reduction in leaves. Plant Physiology, 91, 970–974.

    Article  PubMed  CAS  Google Scholar 

  • Kästner, K.H., and Sze, H., 1987. Potential-dependent anion transport in tonoplast vesicles from oat roots. Plant Physiology, 83, 483–489.

    Article  Google Scholar 

  • Lüttge, U., Smith, J.A.C., Marigo, G., and Osmond, C.B., 1981. Energetics of malate accumulation in the vacuoles of Kalanchoe tubiflora cells. FEBS Letters, 126, 81–84.

    Article  Google Scholar 

  • Lüttge, U., and Smith, J.A.C., 1984. Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoe daigremontiana. Journal of Membrane Biology, 81, 149–158.

    Article  Google Scholar 

  • Lüttge, U., 1988. Day-night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significant. Plant Cell and Environment, 11, 445–451.

    Article  Google Scholar 

  • Marigo, C., Couyssou, H., and Belkoura, M. 1985. Vacuolar efflux of malate and its influence on nitrate accumulation in Catharanthus roseus cells. Plant Science, 39, 97–103.

    Article  CAS  Google Scholar 

  • Marigo, G., Bouyssou, H., and Laborie, D., 1988. Evidence for malate transport into vacuoles isolated from Catharanthus roseus cells. Botanica Acta, 101, 187–191.

    CAS  Google Scholar 

  • Marin, B., Cretin, H., and D’auzac, J., 1982. Energisation of solute transport and accumulation at the tonoplast in Hevea latex. Physiologie Vegetate, 20, 333–346.

    CAS  Google Scholar 

  • Marquardt-Jarczyk, G, and Luttge, U., 1990. Anion transport at the tonoplast of mesophyll cells of the CAM plant Kalanchoe daigremontiana. Journal of Plant Physiology, 136, 129–136.

    Article  CAS  Google Scholar 

  • Martinoia, E., Heck. U., and Wiemken, A., 1981. Vacuoles as storage compartments of nitrate in barley leaves. Nature, 289, 292–294.

    Article  CAS  Google Scholar 

  • Martinoia, E., Flügge, U.I., Kaiser, G., Heber, U., and Heldt, H.W., 1985. Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll photoplasts. Biochimica et Biophysica Acta, 806, 311–319.

    Article  CAS  Google Scholar 

  • Martinoia, E., Vogt, E., and Amrhein, N., 1990. Transport of malate and chloride into barley mesophyll vacuoles. Different carriers are involved. FEBS Letters, 261, 109–111.

    Article  CAS  Google Scholar 

  • Martinoia, E., Vogt, E., Rentsch, D., and Amrhein, N., 1991. Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Biochimica et Biophysica Acta, 1062, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, K., and Tominaga, P., 1987. Energy-dependent uptake of malate into vacuoles isolated from CAM plants Kalanchoe daigremontiana. Journal of Plant Physiology, 127, 385–393.

    Article  CAS  Google Scholar 

  • Oleski, N.M Mahdavi, P., and Bennett, A.B., 1987. Transport properties of the tomato fruit tonoplast. II. Citrate transport. Plant Physiology, 84, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Pope, A.J., and Leigh, R.A., 1987. Some characteristics of anion transport at the tonoplast of oat roots, determined from the effects of anions on pyrophosphate-dependent proton transport. Planta, 172, 91–100.

    Article  CAS  Google Scholar 

  • Rea, P.A., and Sanders, E., 1987. Tonoplast energisation: two H+ pumps, one membrane. Physiologia Plantarum, 71, 131–141.

    Article  CAS  Google Scholar 

  • Rentsch, D., and Martinoia, E., 1991. Citrate transport into barley mesophyll vacuoles - comparison with malate uptake activity. Planta, 184, 532–537.

    Article  CAS  Google Scholar 

  • Schnabl, H., and Kottmeier, C., 1984. Determination of malate levels during the swelling of vacuoles isolated from guard-cell protoplasts. Planta, 161, 27–31.

    Article  CAS  Google Scholar 

  • Sze, H., 1985. H+-translocating ATPases: advances using membrane vesicles. Annual Review of Plant Physiology, 36, 175–208.

    Article  CAS  Google Scholar 

  • Tophof, S., Martinoia, E., Kaiser, G., Hartung, W., and Amrhein, N., 1989. Compartmentation and transport of 1-aminocyclopropane-1-carboxylic acid and N-malonyl-1aminocyclopropane-1-carboxylic acid in barley and wheat mesophyll cells and protoplasts. Plant Physiology, 75, 333–339.

    Article  CAS  Google Scholar 

  • White, P.J., and Smith, J.A.C., 1989. Proton and anion transport at the tonoplast in crassulacean-acidmetabolism plants: specificity of the malate-influx system in Kalanchoe daigremontiana. Planta, 179, 265–274.

    Article  CAS  Google Scholar 

  • Winter, K., Usuda, H., Tsuzuki, M., Schmitt, M., Edwards, G.E., Thomas, R.J., and Evert, R.F., 1982. Influence of nitrate nand ammonia on photosynthetic characteristics and leaf anatomy of Moricandia arvensis. Plant Physiology, 70, 615–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinoia, E., Rentsch, D. (1992). Uptake of Malate and Citrate into Plant Vacuoles. In: Cooke, D.T., Clarkson, D.T. (eds) Transport and Receptor Proteins of Plant Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3442-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3442-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6523-5

  • Online ISBN: 978-1-4615-3442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics