Skip to main content
Book cover

Taurine pp 45–54Cite as

Intestinal Taurine and the Enterohepatic Circulation of Taurocholic Acid in the Cat

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 315))

Abstract

Taurine’s most well defined role is the conjugation of bile salts in the liver. After synthesis from cholesterol, bile salts are conjugated with taurine and/or glycine before secretion into the bile canaliculi1. When taurine is limiting, most mammals have the ability to conjugate bile salts with glycine, exceptions being the dog2 and the cat3,4, which conjugate bile salts almost exclusively with taurine. The percentage of total bile salts conjugated with taurine is determined by both the hepatic taurine concentration and the affinity of the bile salt conjugase for glycine and taurine2,5-7. Taurine is the preferred substrate in most species with 90 percent taurine conjugation occurring in the rat when hepatic taurine and glycine concentrations are equal7. Hepatic taurine depletion in rats, caused by the infusion of cholic acid7 or by feeding guanidinoethanesulfonic acid5, results in a substantial increase in the amount of bile salts conjugated with glycine. In species that cannot conjugate bile salts with glycine (the dog and cat), hepatic taurine depletion leads instead to an increase in the proportion of unconjugated bile salts, the majority being free cholic acid2,3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Elliott, Metabolism of bile acids in liver and extrahepatic tissues, in: “Sterols and Bile Acids (New Comprehensive Biochemistry)”, H. Danielsson and J. Sjövall, eds., Elsevier, Amsterdam, pp. 303–329 (1985).

    Chapter  Google Scholar 

  2. E.R.L. O’Mádille, T.G. Richards, and A.H. Short, Acute taurine depletion and maximal rates of hepatic conjugation and secretion of cholic acid in the dog, J. Physiol. 180:67–79 (1965).

    Google Scholar 

  3. LA. Rentschler, L.L. Hirschberger, and M.H. Stipanuk, Response of the kitten to dietary taurine depletion: Effects on renal reabsorption, bile acid conjugation and activities of enzymes involved in taurine synthesis, Comp. Biochem. Physiol. 84B:319–325 (1986).

    CAS  Google Scholar 

  4. J.A. Sturman, D.K. Rassin, K.C. Hayes, and G. E. Guall, Taurine deficiency in the kitten: Exchange and turnover of [35S] taurine in brain, retina, and other tissues, J. Nutr. 108:1462–1476 (1978).

    CAS  Google Scholar 

  5. J. De La Rosa and M.H. Stipanuk, The effect of taurine depletion with guanidinoethanesulfonate on bile acid metabolism in the rat, Life Sci. 36:1347–1351 (1985).

    Article  Google Scholar 

  6. D.A. Vessey, The biochemical basis for the conjugation of bile acids with either glycine or taurine, Biochem. J. 174:621–626 (1978).

    CAS  Google Scholar 

  7. W.G.M. Hardison and J.H. Proffitt, Influence of hepatic taurine concentration on bile acid conjugation with taurine, Am. J. Physiol. 1:E75–E79 (1977).

    Google Scholar 

  8. J.R. Malagelada, V.L.W. Go, E.P. DiMagno, and W.H.J. Summerskill, Interactions between intraluminal bile acids and digestive products on pancreatic and gallbladder function, J. Clin. Invest. 52:2160–2165 (1973).

    Article  CAS  Google Scholar 

  9. G. Gomez, J.R. Upp, F. Lluis, R.W. Alexander, G.J. Poston, G.H. Greeley, Jr. and J.C. Thompson, Regulation of the release of cholecystokinin by bile salts in dogs and humans, Gastroenterology 94:1036–1046 (1988).

    CAS  Google Scholar 

  10. T. Midtvedt and A. Norman, Bile acid transformations by microbial strains belonging to genera found in intestinal contents, Acta Path. Microbiol. Scandinay. 71:629–638 (1967).

    Article  CAS  Google Scholar 

  11. G.W. Hepner, J.A. Sturman, A.F. Hofmann, and P.I. Thomas, Metabolism of steroid and amino acid moieties of conjugated bile acids in man. III. Choyltaurine (taurocholic acid), J. Clin. Invest. 52:443–440 (1973).

    Article  Google Scholar 

  12. M.W. Huff. and K.K. Carroll, Effects of dietary protein on turnover, oxidation, and absorption of cholesterol, and on steroid excretion in rabbits, J. Lipid Res. 21:546–558 (1980).

    CAS  Google Scholar 

  13. Y.-S. Choi, S. Goto, I. Ikeda, and M. Sugano, Interaction of dietary protein, cholesterol and age on lipid metabolism of the rat, Br. J. Nutr. 61:531–543 (1989).

    Article  CAS  Google Scholar 

  14. M. Sugano, S. Goto, Y. Yamada, K. Yoshida, Y. Hashimoto, T. Matsuo, and M. Kimoto, Cholesterol-lowering activity of various undigested fractions of soybean protein in rats, J. Nutr. 120:977–985 (1990).

    CAS  Google Scholar 

  15. S. Makin, H. Nakashima, K. Minami, R. Moriyama, and S. Takao, Bile acid-binding protein from soybean seed: Isolation, partial characterization and insulin-stimulating activity, Agric. Biol. Chem. 52:803–809 (1988).

    Article  Google Scholar 

  16. D. Kritchevsky and J.A. Story, Binding of bile salts in vitro by nonnutritive fiber, J. Nutr. 104:458–462 (1974).

    CAS  Google Scholar 

  17. E.W. Pomare, K.W. Heaton, T.S. Low-Beer, and H.J. Espiner, The effect of wheat bran upon bile salt metabolism and upon the lipid composition of bile in gallstone patients, Digestive Diseases 21:521–526 (1976).

    Article  CAS  Google Scholar 

  18. Y. Imai, S. Kawata, M. Inaoa, S. Miyoshi, Y. Minami, Y. Matsuzawa, K Uchioa, and S. Tarui, Effect of cholestyramine on bile acid metabolism in conventional rats, Lipids 22:513–516 (1987).

    Article  CAS  Google Scholar 

  19. K. Ebihara and B.O. Schneeman, Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats,J. Nutr. 119:1100–1106 (1989).

    CAS  Google Scholar 

  20. T. Ide and M. Horii, Predominant conjugation with glycine of biliary and lumen bile acids in rats fed on pectin, Br. J. Nutr. 61:545–557 (1988).

    Article  Google Scholar 

  21. T. Ide, K. Takashi, M. Horri, T. Yamamoto, and K Kawashima, Contrasting effects of water-soluble and water-insoluble dietary fibers on bile acid conjugation and taurine metabolism in the rat, Lipids 25:335–340 (1990).

    Article  CAS  Google Scholar 

  22. T. Ide, M. Horri, K. Kawashima, and T. Yamamoto, Bile acid conjugation and hepatic taurine concentration in rats fed on pectin, Br. J. Nuts. 62:539–550 (1989).

    Article  CAS  Google Scholar 

  23. P.D. Pion, M.D. Kittleson, Q.R. Rogers, and J.G. Morris, Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy, Science 237:764–768 (1987).

    Article  CAS  Google Scholar 

  24. J.G. Morris, Q.R. Rogers, and L.M. Pacioretty, Taurine: An essential nutrient for cats, J. Small Anirn. Pract. 31:502–509 (1990).

    Article  Google Scholar 

  25. J.A. Cooke, Q.R. Rogers, and J.G. Morris, Urinary and fecal excretion of taurine by cats fed commercial canned diets, FASEB J. 3:A1617 (1989).

    Google Scholar 

  26. K. Shiekh, Taurine deficiency and retinal defects associated with small intestine bacterial overgrowth, Gastroenterology 80:1363 (1981).

    Google Scholar 

  27. K. Ikeda, H. Yamada, and S. Tanaka, The bacterial degradation of taurine, J. Biochem. 54:312–316 (1963).

    CAS  Google Scholar 

  28. M.A. Hickman, Q.R. Rogers, and J.G. Morris, Effect of processing on fate of dietary [14C]taurine in cats, J. Nutr. 120:995–1000 (1990).

    CAS  Google Scholar 

  29. MA. Hickman, Q.R. Rogers, and J.G. Morris, Taurine balance is different in cats fed purified and commercial diets, J. Nutr., in press (1992).

    Google Scholar 

  30. S.L. Gorbach, Progress in gastroenterology, intestinal microflora, Gastroenterology 60:1110–1129 (1971).

    CAS  Google Scholar 

  31. MA. Hickman, M.L. Bruss, J.G. Morris, and Q.R. Rogers, Kinetics of the enterohepatic circulation of taurocholic acid are affected by dietary protein source, soybean versus casein, and taurine status in cats, J. Nutr., in press (1992).

    Google Scholar 

  32. S.D. Feighner and M.P. Dashkevicz, Effect of dietary carbohydrates on bacterial cholytaurine hydrolase in poultry intestinal homogenates, Appl. Environ. Micro. 54:337–342 (1988).

    CAS  Google Scholar 

  33. M. Winitz, R.F. Adams, D.A. Seedman, P.N. Davis, L.G. Jayko, and J.A. Hamilton, Studies in metabolic nutrition employing chemically defined diets, Am. J. Clin. Nuts. 23:546–559 (1970).

    CAS  Google Scholar 

  34. M.J. Hill and B.S. Drasar, Degradation of bile salts by human intestinal bacteria, Gut 9:22–27 (1968).

    Article  CAS  Google Scholar 

  35. S. Hayakawa, Microbiological transformation of bile acids, Adv. Lipid Res. 11:143–192 (1973).

    CAS  Google Scholar 

  36. T. Chikai, H. Nakao, and K. Uchida, Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats, Lipids 22:669–671 (1987).

    Article  CAS  Google Scholar 

  37. B.E. Gustafsson, S. Bergstsröm, S. Lindstedt, and A. Norman, Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C, Proc. Soc. Exp. Biol. Med. 94:467–471 (1957).

    CAS  Google Scholar 

  38. S. Borgström, L. Krabisch, M. Lindstrom, and J. Lillienau, Deconjugation of bile salts: Does it occur outside the contents of the intestinal tract in the rat?, Scand. J. Clin. Lab. Invest. 47:543–549 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hickman, M.A., Morris, J.G., Rogers, Q.R. (1992). Intestinal Taurine and the Enterohepatic Circulation of Taurocholic Acid in the Cat. In: Lombardini, J.B., Schaffer, S.W., Azuma, J. (eds) Taurine. Advances in Experimental Medicine and Biology, vol 315. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3436-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3436-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6520-4

  • Online ISBN: 978-1-4615-3436-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics