Skip to main content

The Metabolic Basis for the Taurine Requirement of Cats

  • Chapter
Taurine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 315))

Abstract

Taurine is an essential dietary nutrient for cats because the rate of synthesis under most conditions is less than the rate of loss from the body. A deficiency of taurine results in pathological states affecting a number of organ systems, (Morris et al., 1990). Definition of the minimal dietary requirements of cats for taurine has been particularly challenging. Unlike many other nutrients, the loss of taurine from the body is dependent on the composition of the diet, and the method by which the diet is processed. The minimal concentrations of taurine in the diet to satisfy each physiological function of taurine at this time are unknown and likely to be somewhat different for each function. For example, two clinical conditions attributed to taurine deficiency in cats, feline central retinal degeneration (FCRD) and dilated cardiomyopathy do not always occur together in the same cat, each can occur without presence of the other (Pion et al., 1987). The purpose of this paper is to briefly review two important factors that determine the requirement for this nutrient, i.e. endogenous synthesis of taurine and loss of taurine from the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akahori, S., Ejiri, K., Kanemori, H., Kudo, T., Sekiba, T., Ubuka, T. and Akagi, R., 1987, Transamination of L-cysteine sulfinate in the growing rat, Acta Med. Okayama 41:279–283.

    CAS  Google Scholar 

  • Blaschko, H. 1942, L(-)-Cysteic acid decarboxylase, Biochem. J. 36:571–574.

    CAS  Google Scholar 

  • Blaschko, H., Datta, S.P and Harris, H., 1953, Pyridoxin deficiency in the rat: Liver L-cysteic acid decarboxylase activity and urinary amino-acids, Brit. J. Nutr. 7:364–371.

    Article  CAS  Google Scholar 

  • Cavallini, D., Duprè, S., Frederici, G., Solins, S., Ricii, G., Antonucci, A., Spoto, G. and Matarese, M., 1978, Isethionic acid as a taurine co-metabolite. in: “Taurine and Neurological Disorders,” R. Huxtable and A. Barbeau, ed., pp.29–34, Raven Press, New York.

    Google Scholar 

  • Choi, Y.-S., Goto, S., Ikeda, I. and Sugano, M., 1989, Interaction of dietary protein, cholesterol and age on lipid metabolism of the rat, Br. J. Nutr. 61:531–543.

    Article  CAS  Google Scholar 

  • Cooper, A.J.L., 1983, Biochemistry of sulfur-containing amino acids, Ann. Rev. Biochem. 52:187–222.

    Article  CAS  Google Scholar 

  • Daniels, K.M. and Stipanuk, M.H., 1982, The effect of dietary cysteine level on cysteine metabolism in rats, J. Nutr. 112:2130–2141.

    CAS  Google Scholar 

  • De La Rosa, J. and Stipanuk, M.H., 1985, Evidence for a rate-limiting role of cysteinesulfmate decarboxylase activity in taurine biosynthesis in vivo, Comp. Biochem. Physiol. 81B:565–571.

    Google Scholar 

  • De La Rosa, J., Drake, M.R. and Stipanuk, M.H., 1987, Metabolism of cysteine and cysteinesulfmate in rat and cat hepatocytes, J. Nutr. 117:549–558.

    Google Scholar 

  • Dieter, JA., Stewart, D.R., Haggerty, MA., and Stabenfeldt, G.H., 1988, Pregnancy failure in cats associated with dietary taurine deficiency, Abstract #271, Annual Meeting of Society for the Study of Reproduction, Seattle, Wash. Aug 1–4,1988.

    Google Scholar 

  • Drake, M.R., de La Rosa, J. and Stipanuk, M.H., 1987, Metabolism of cysteine in rat hepatocytes, Biochem. J. 244:279–286.

    CAS  Google Scholar 

  • Edgar, S.E., Morris, J.G. Rogers, Q.R., and Hickman, MA , 1991, In vivo conversion of cysteic acid to taurine in cats, J. Nutr. 121:S183–184.

    Google Scholar 

  • Fellman, J.H., Roth, E.S. and Fujita, T.S., 1978, Taurine is not metabolized to isethionate in mammalian tissue, in: “Taurine and Neurological Disorders,” A. Barbeau and R.J. Huxtable, ed., Raven Press, New York.

    Google Scholar 

  • Glass, E.N., Odle, J., Baker, D.H. and Czarnecki-Maulden, G.L., 1991, Development of a renal adaptive response assay as a measure of taurine bioavailability in adult cats, FASEB J. 5:(4) A591, Abst 1284.

    Google Scholar 

  • Griffith, O.W., 1983, Cysteinesulfmate metabolism, J. Biol. Chem. 258:1591–1598.

    CAS  Google Scholar 

  • Guion-Rain, M-C. and Chatagner, F., 1972, Rat liver cysteine sulfinate decarboxylase: some observations about substrate specificity, Biochim. Biophys. Acta, 276:272–276.

    Article  CAS  Google Scholar 

  • Hayes, K.C., 1988, Taurine nutrition, Nutr. Res. Rev. 1:99–113.

    Article  CAS  Google Scholar 

  • Hickman, MA., Rogers, Q.R. and Morris, J.G., 1990, Effect of processing on the fate of dietary [14C]taurine in cats, J. Nutr. 120:995–1000.

    CAS  Google Scholar 

  • Hope, D.B., 1955, Pyridoxal phosphate as the coenzyme of the mammalian decarboxylase of L-cysteine sulphinic and L-cysteic acids, Biochem. J. 59:497–500.

    CAS  Google Scholar 

  • Hosokawa, Y., Niizeki, S., Tojo, H., Sato, I. and Yamaguchi, K., 1988, Hepatic cysteine dioxygenase activity and sulfur amino acid metabolism in rats: possible indicators in the evaluation of protein quality, J. Nutr. 118:456–461.

    CAS  Google Scholar 

  • Huxtable, RJ., 1986, Taurine and the oxidative metabolism of cysteine, in: “Biochemistry of Sulfur,” Biochemistry of the Elements, vol 6, Plenum Press, New York.

    Google Scholar 

  • Hylemon, P.B., 1985, Metabolism of bile acids in the intestinal microflora. in: “Sterols and Bile Acids,” H. Danielsson and J. Sjövall, ed., Chap 12 New Comprehensive Biochemistry, vol 12, Elsevier, Amsterdam.

    Google Scholar 

  • Ishimoto, M., Kondo, H., Enami, M., and Yazawa, M., 1983, Sulfite formation by bacterial enzymes from taurine and benzenesulfonate, in: “Sulfur Amino Acids Biochemical and Clinical Aspects,” K. Kuriyama, Ri. Huxtable, and H. Iwata, ed., Arthur R. Liss, New York. pp 393–394.

    Google Scholar 

  • Jacobsen, J.G. and Smith, L.H., 1963, Comparison of decarboxylation of cysteine sulphinic acid-1-14C and cysteic acid-1-14C by human, dog and rat liver and brain, Nature 200:575–577.

    Article  CAS  Google Scholar 

  • Jacobsen, J.G., Thomas, L.L., and Smith, L.H., 1964, Properties and distribution of mammalian L-cysteine sulfmate carboxy-lyase, Biochim. Biophys. Acta 85:103–116.

    CAS  Google Scholar 

  • James, M.O., Smith, R.L., Williams, R.T. and Reidenberg, M., 1972, The conjugation of phenylacetic acid in man, sub-human primates and some non-primate species Proc. R. Soc. Lond. B.182:25–35.

    Article  Google Scholar 

  • Jerkins, AA., Bobroff, L.E., and Steele, R.D., 1989, Hepatic cysteine sulfinic acid decarboxylase activity in rats fed various levels of dietary casein, J. Nutr. 119:1593–1597.

    CAS  Google Scholar 

  • Kohashi, N., Yamaguchi, Y., Hosokawa, Y., Kori, Y., Fujii, O., and Ureda, I, 1978, Dietary control of cysteine dioxygenase in rat liver, J. Biochem. 84:159–168.

    CAS  Google Scholar 

  • Martin, W.G, Sass, N.L., Hill, L., Tarka, S., and Truex, R., 1972, The synthesis of taurine from sulfate. IV. An alternative pathway for taurine synthesis by the rat, Proc. Soc. Exp. Biol. Med. 141:632–633.

    CAS  Google Scholar 

  • Morris, J.G., Rogers, Q.R., and Pacioretty, L.M., 1990, Taurine: an essential dietary nutrient for cats, J. Sm. Anim. Pract. 31:502–509.

    Article  Google Scholar 

  • National Research Council, 1986, Nutrient Requirements of Cats, National Academy Press, Washington D.C.

    Google Scholar 

  • Park, T., Rogers, Q.R., Morris, J.G., and Chesney, R.W., 1989, Effect of dietary taurine on renal taurine transport by proximal brushborder membrane vesicles in the kitten, J. Nutr. 119:1452–1460.

    CAS  Google Scholar 

  • Park, T., 1991, Regulation of taurine transport across the renal proximal tubule brush border membrane and cysteine metabolism in cats, Ph.D. thesis, University of California, Davis.

    Google Scholar 

  • Park, T., Rogers, Q.R., Morris, J.G., and Morris, J.P.G., 1991a, Dietary acid and alkali loading do not alter taurine uptake by renal proximal tubule brush border membrane vesicles in kittens, J.. Nu tr. 121:215–222.

    CAS  Google Scholar 

  • Park, T., Jerkins, AA., Steele, R.D., Rogers, Q.R., and Morris, J.G., 1991b, Effect of dietary protein and taurine on enzyme activities involved in cysteine metabolism in cat tissue, J. Nutr. 121:S181–S182.

    CAS  Google Scholar 

  • Peck, EJ. and Awapara, J., 1967, Formation of taurine and isethionic acid in rat brain, Biochim. Biophys. Acta 141:499–506.

    Article  CAS  Google Scholar 

  • Pion, P.D., Kittleson, M.D., Rogers, Q.R., and Morris, J.G., 1987, Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy, Science 237:764–768.

    Article  CAS  Google Scholar 

  • Rentschaler, LA., Hirschberger, L.L., and Stipanuk, M.H., 1986, Response of the kitten to dietary taurine depletion: Effects on renal reabsorption, bile acids conjugation and activities of enzymes involved in taurine synthesis, Comp. Biochem. Physiol. 84B:319–325.

    Google Scholar 

  • Simpson, R.C. and Freedland, RA, 1975, Relative importance of the two major pathways for the conversion of cysteine to glucose in the perfused rat liver, J. Nutr. 105:1440–1446.

    CAS  Google Scholar 

  • Stipanuk, M.H., 1979, Effect of excess dietary methionine on the catabolism of cysteine in rats, J. Nutr. 109:2126–2139.

    CAS  Google Scholar 

  • Stipanuk, M.H. and King, K.M., 1982, Characteristics of the enzyme capacity for cysteine desulfhydration in cat tissue, Comp. Biochem. Physiol. 73B:595–601.

    CAS  Google Scholar 

  • Stipanuk, M.H. and Beck, P.W., 1982, Characterization of the enzymatic capacity for cysteine desulphhydration in liver and kidney of the rat, Biochem. J. 206:267–277.

    CAS  Google Scholar 

  • Stipanuk, M.H. and Rotter, MA., 1984, Metabolism of cysteine, cysteinesulfmate and cysteinesulfonate in rats fed adequate and excess levels of sulfur-containing amino acids, J. Nutr. 114:1426–1437.

    CAS  Google Scholar 

  • Stipanuk, M.H., De La Rosa, J., and Hirschberger, L.L., 1990, Catabolism of cyst(e)ine by rat cortical tubules, J. Nutr. 120:450–458.

    CAS  Google Scholar 

  • Sturman, JA., Gargano, A.D., Messing, J.M., and Imaki, H., 1986, Feline maternal taurine deficiency: effect on mother and offspring, J. Nutr. 166:655–667.

    Google Scholar 

  • Sturman, JA., Palackal, T., Imaki, H., Moretz, R.C. French, J., and Wisniewski, H.M., 1987, Nutritional taurine deficiency and feline pregnancy outcome, in: “The Biology of Taurine. Methods and Mechanisms,” R.J. Huxtable, F. Franconi, and A. Giotti, eds., Adv. Exp. Med. 217, pp 113–124.

    Google Scholar 

  • Sturman, JA. and Messing, J.M., 1991, Dietary taurine content and feline reproduction and outcome, J. Nutr. 121:1195–1203.

    CAS  Google Scholar 

  • Sugano, M., Goto, S., Yamada, Y., Yoshida, K., Hashimoto, Y., Matsuo, T., and Kimoto, M., 1990, Cholesterol-lowering activity of various undigested fractions of soybean protein in rats, J. Nutr. 120:977–985.

    CAS  Google Scholar 

  • Ubuka, T., Yuasa, S., Ishimoto, Y., and Shimomura, M., 1977a, Desulfuration of L-cysteine through transamination and transsulfuration in rat liver, PhysioL Chem. Phys. 9:241–246.

    CAS  Google Scholar 

  • Ubuka, T., Umemura, S., Ishimoto, Y., and Shimomura, M., 1977b, Transamination of L-cysteine in rat liver mitochondria, Physiol. Chem. Phys. 9: 91–96.

    CAS  Google Scholar 

  • Ubuka, T., Umemura, S., Yuasa, S., Kinuta, M., and Watanabe, K., 1978, Purification and characterization of mitochondrial cysteine aminotransferase from rat liver, Physiol. Chem. Phys. 10:483–500.

    CAS  Google Scholar 

  • Varga, V., Török, K., Feuer, L., Gulyas, J., and Somogyi, J., 1985, r-Glutamyltransferase in the brain and its role in the formation of r-L-glutamyl-taurine, in: “Taurine: Biological Actions and Clinical Perspectives,” S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen, eds., Progress in Clinical and Biological Research 119. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Wainer, A., 1964, The production of sulfate from cysteine without the formation of free cysteinesulfmate, Biochem. Biophys. Res. Comm. 16:141–144.

    Article  CAS  Google Scholar 

  • Weinstein, C.L., Haschemeyer, R.H., and Griffith, O.W., 1988, In vivo studies of cysteine metabolism. Use of D-cysteinesulfmate, a novel cysteinesulfmate decarboxylase inhibitor, to probe taurine and pyruvate synthesis,1. Biot Chem. 263:16568–16579.

    CAS  Google Scholar 

  • Yamaguchi, K, Sakakibara, S., Asamizu, J.Z. and Ueda, I. 1973, Induction and activation of cysteine oxidase of rat liver. II. The measurement of cysteine metabolism in vivo and the activation of in vivo activity of cysteine oxidase. Biochim. Biophys. Acta 297:48–59.

    Article  CAS  Google Scholar 

  • Yamaguchi, K., Hosokawa, Y., Kohashi, N., Kori, Y., Sakakibara, S., and Ueda, I.,1978, Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization and analysis of the activation and inactivation, J. Biochem. (Tokyo) 83: 479–491.

    CAS  Google Scholar 

  • Yamaguchi, K., Hosokawa, Y., Niizeki, S., Tojo, H., and Sato, I., 1985, Nutritional significance of the cysteine dioxygenase on the biological evaluation of dietary protein in growing rats, Frog. Clin. Biol. Res. 179:23–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morris, J.H., Rogers, Q.R. (1992). The Metabolic Basis for the Taurine Requirement of Cats. In: Lombardini, J.B., Schaffer, S.W., Azuma, J. (eds) Taurine. Advances in Experimental Medicine and Biology, vol 315. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3436-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3436-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6520-4

  • Online ISBN: 978-1-4615-3436-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics