Skip to main content

Acetylcholine-Somatostatin Interactions: Potential Implications for the Treatment of Alzheimer’s Disease

  • Chapter
Treatment of Dementias

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 40))

  • 86 Accesses

Abstract

The ongoing surge in the elderly population, with associated financial, social and emotional costs, has increased the urgency to find treatment for diseases that afflict this segment of the population. Of major concern is the devastating condition of Alzheimer’s Disease (AD), which will affect nearly half of the population over 85 years old (Evans et al., 1989), and accounts for a tremendous proportion of caretaking and nursing home costs. The affective aspects of AD, involving loss of mental capacity with the fear and stress it engenders in victims and their families, adds an intense emotional component to the need to understand and treat this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrisani, O. M. and Dixon, J. E., 1990, Somatostatin gene regulation, Annu. Rev. Phvsiol., 52: 793.

    Article  CAS  Google Scholar 

  • Araujo, D. M., Lapchak, P. A., Collier, B., and Quirion, R., 1990, Evidence that somatostatin enhances endogenous acetylcholine release in the rat hippocampus, J. Neurochem., 55: 1546.

    Article  PubMed  CAS  Google Scholar 

  • Arendash, G. W., Millard, W. J., Dunn, A. J. and Meyer, E. M., 1987, Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat, Science. 238: 952.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, C. A., Mizumori, S. J. Y., Lovinger, D. M., Sheu, F.-S., Murakami, K., Chan, S. Y., Linden, D. J., Nelson, R. B. and Routtenberg, A., 1988, Selective decline in protein Fl phosphorylation in hippocampus of senescent rats, Neurobiol. Aging. 9: 393.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Mazurek, M. F., Tran, V. T., Chattha, G., Bird, E. D. and Martin, J. B., 1985, Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s Disease, Science, 229: 289.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Uhl, G., Mazurek, M. F., Kowall, N., and Martin, J. B., 1986, Somatostatin:Alterations in the central nervous system in neurological disease, in:“Neuropeptides in Neurologic and Psychiatric Disease”, J. B. Martin and Jack D. Barchas, eds., Raven Press, New York, NY.

    Google Scholar 

  • Bonner, T. I., 1989, The molecular basis of muscarinic receptor diversity, TINS. 12: 148.

    PubMed  CAS  Google Scholar 

  • Brown, D. A. and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone, Nature. 283: 673.

    Article  PubMed  CAS  Google Scholar 

  • Chneiweiss, H., Bertrand, P. Epelbaum, J., Kordon, C., Glowinski, J., Premont, J., Enjalbert, A., 1987, Somatostatin receptors on cortical neurones and adenohypophysis:comparison between specific binding and adenylate cyclase inhibition, Eur. J. Pharm., 138: 249.

    Article  CAS  Google Scholar 

  • Clark, A. W., Tran, P., Aubin, S. and Zwiers, H., 1988, Altered distribution of immunoreactivity for the growth-associated protein B-50 in neuritic plaques of Alzheimer’s Disease, Neurosci. Res. Comm., 2: 53.

    CAS  Google Scholar 

  • Cohn, M. C, and Cohn, M., 1975, “Barrel rotation” induced by somatostatin in the nonlesioned rat, Brain Res., 96:138.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T., Price, D. L. and DeLong, M. R., 1983, Alzheimer’s Disease:A disorder of cortical cholinergic innervation, Science, 219: 1184.

    Article  PubMed  CAS  Google Scholar 

  • Crews, F. T., Meyer, E. M., Gonzales, R. A., Theiss, C., Otero, D. H., Larsen, K., Raulli, R. and Calderini, G., 1986, Presynaptic and postsynaptic approaches to enhancing central cholinergic transmission, in:“Treatment Development Strategies for Alzheimer’s Disease”, T. Crook, R. Bartus, S. Ferris, and S. Gershan, eds., Mark Powley Assoc., Inc., Madison, CT.

    Google Scholar 

  • Davies, P., Katzman, R. and Terry, R. D., 1980, Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer Disease and Alzheimer senile dementia, Nature. 288: 279.

    Article  PubMed  CAS  Google Scholar 

  • Delfs, J. R., 1985, Somatostatin and Alzheimer’s Disease:Possible pathophysiological associations, in:“Senile Dementia of the Alzheimer Type”, Alan R. Liss, Inc., New York, NY.

    Google Scholar 

  • Delfs, J. R., Zhu, C. H. and Dichter, M. A., 1984, Coexistence of acetylcholinesterase and somatostatin-immunoreactivity in neurons cultured from rat cerebrum, Science, 223: 61.

    Article  PubMed  CAS  Google Scholar 

  • Dokas, L. A., and Ting, S. M., 1990, A comparison of the regulatory properties of striatal and cortical forms of adenylate cyclase, Soc. Neurosci. Abstr., 16, #538. 7.

    Google Scholar 

  • Dokas, L. A., Zwiers, H., Coy, D. H. and Gispen, W. H., 1983, Somatostatin and analogs inhibit endogenous synaptic plasma membrane protein phosphorylation in vitro, Eur. J. Pharm., 88: 185.

    Article  CAS  Google Scholar 

  • Dutar, P. and Nicoll, R., 1988, Classification of muscarinic responses in hippocampus in terms of receptor subtypes and second messenger systems:electrophysiological studies in vitro, J. Neurosci., 8: 4214.

    PubMed  CAS  Google Scholar 

  • Eva, C. and Costa, E., 1987, In rat hippocampus, somatostatin 14 and muscarinic receptor ligands modulate an adenylate cyclase belonging to a common domain of the receptor, J. Pharm. Exp. Ther., 242: 888.

    CAS  Google Scholar 

  • Evans, D. A., Funkenstein, H., Albert, M. S., Scherr, P. A., Cook, N. R, Chown, M. J., Hebert, L. E., Hennekens, C. H. and Taylor, J. O., 1989, Prevalence of Alzheimer’s disease in a community population of older persons, JAMA, 262: 2551.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, R. A. and Crews, F. T., 1985, Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes, Biochem. J., 232: 799.

    PubMed  CAS  Google Scholar 

  • Gonzalez, G. A. and Montimny, M. R., 1989, Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133, Cell, 59: 675.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M. E., Ziff, E. B. and Greene, L. A., 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription, Science. 234: 80.

    Article  PubMed  CAS  Google Scholar 

  • Haga, K. and Haga, T., 1989, Agonist-dependent phosphorylation of cerebral and atrial muscarinic receptors:blockade of the phosphorylation by GTP-binding regulatory proteins and its reversal by guanine nucleotides, Biomedical Research. 10: 293.

    CAS  Google Scholar 

  • Haga, K., Haga, T. and Ichiyama, A., 1990, Phosphorylation by protein kinase C of the muscarinic acetylcholine receptor, J. Neurochem., 54: 1639.

    Article  PubMed  CAS  Google Scholar 

  • Hortnagl, H., Sperk, G., Sobal, G. and Maas, D., 1990, Cholinergic deficit induced by ethylcholine aziridinium (AF64A) transiently affects somatostatin and neuropeptide Y levels in rat brain, J. Neurochem., 54: 1608.

    Article  PubMed  CAS  Google Scholar 

  • Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S. and Jakobs, K. H., 1985, Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem., 151: 431.

    Article  PubMed  CAS  Google Scholar 

  • Katzman, R. and Saitoh, T., 1991, Advances in Alzheimer’s Disease, FASEB. 5: 278.

    CAS  Google Scholar 

  • Mancillas, J. R., Siggins, G. R. and Bloom, F. E., 1986, Somatostatin selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex, Proc. Natl. Acad. Sci. USA. 83: 7518.

    Article  PubMed  CAS  Google Scholar 

  • Moore, S. D., Madamba, S. G., Joels, M. and Siggins, G. R., 1988, Somatostatin augments the M-current in hippocampal neurons, Science. 239: 278.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Rogers, J., Sherr, S., Benoit, R. and Bloom, F. E., 1985, Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients, Nature. 314: 90.

    Article  PubMed  CAS  Google Scholar 

  • Neve, R. L., Finch, E. A., Bird, E. D. and Benowitz, L. L, 1988, Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain, Proc. Natl. Acad. Sci. USA. 85: 3638.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M. and Greenberg, M. E., 1990, The regulation and function of c-fos and other immediate early genes in the nervous system, Neuron. 4: 477.

    Article  PubMed  CAS  Google Scholar 

  • Trejo, J. and Brown, J. H., 1991, c-fos and c-jun are induced by muscarinic receptor activation of protein kinase C but are differentially regulated by intracellular calcium, J., Biol. Chem., 266: 7876.

    PubMed  CAS  Google Scholar 

  • Van Dongen, C. J., Zwiers, H., De Graan, P. N. E. and Gispen, W. H., 1985, Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein, Biochem. Biophys. Res. Comm., 128: 1219.

    Article  PubMed  Google Scholar 

  • Van Hooff, C. O. M., De Graan, P. N. E., Oestreicher, A. B. and Gispen, W. H., 1989, Muscarinic receptor activation stimulates B-50/GAP-43 phosphorylation in isolated nerve growth cones, J. Neurosci., 9: 3753.

    PubMed  Google Scholar 

  • Watson, T. W. J. and Pittman, Q. J., 1988, Pharmacological evidence that somatostatin activates the m-current in hippocampal pyramidal neurons, Neurosci. Lett., 91: 172.

    Article  PubMed  CAS  Google Scholar 

  • Wirak, D. O., Bayney, R., Ramabhadran, T. V., Fracasso, R. P., Hart, J. T., Hauer, P. E. Hsiau, P., Pekar, S. K., Scangos, G. A., Trapp, B. D. and Unterbeck, A. J., 1991, Deposits of amyloid ß protein in the central nervous system of transgenic mice, Science. 253: 323.

    Article  PubMed  CAS  Google Scholar 

  • Yamano M. and Luiten, P. G. M., 1989, Direct synaptic contacts of medial septal efferents with somatostatin immunoreactive neurons in the rat hippocampus, Brain Res. Bull., 22: 993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaffer, L.M., Ting, Sm., Dokas, L.A. (1992). Acetylcholine-Somatostatin Interactions: Potential Implications for the Treatment of Alzheimer’s Disease. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics