Skip to main content

Potential Therapeutic Use of Growth Hormone in the Metabolic Treatment of Alzheimer’s Disease.

  • Chapter
Treatment of Dementias

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 40))

Abstract

Alzheimer’s disease (AD) is a neurological disorder that largely affects the elderly population (mean onset = 7th–8th decade of life) and is characterized behaviorally by a progressive loss of both memory and cognitive function (1, 2). AD occurs more frequently in females than males (1, 2) and is generally associated with patients that weigh less and have decreased body fat composition (3–5). The survival time from the time of clinical determination of the disease to death is quite variable and ranges between 2 and 10 years with death ultimately caused by bronchiopneumonia or cardiovascular collapse (6, 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Price DL, Whitehouse PJ, Struble RG. Alzheimer’s disease. Ann Rev Med 36:349– 356 (1985).

    PubMed  CAS  Google Scholar 

  2. Whitehouse PJ, Struble RG, Hedreen JC, Clark AW, Price DL. Alzheimer’s disease and related dementias: selective involvement of specific neuronal systems. CRC Crit Rev Clin Neurobiol 1: 319–339 (1985).

    PubMed  CAS  Google Scholar 

  3. Sandman P-O, Adolfsson R, Nygren C, Hallmans G, Winblad B. Nutritional status and dietary intake in institutionalized patients with Alzheimer’s disease and multiinfarct dementia. J Am Geriatr Soc 35: 31–38 (1987).

    PubMed  CAS  Google Scholar 

  4. Singh S, Mulley GP, Losowsky MS. Why are Alzheimer’s patients thin? Age Aging 17: 21–28 (1988).

    CAS  Google Scholar 

  5. Park CR, von Preyss-Friedman SM, Schwartz RS, Woods SC. Disturbed body weight control in geriatric rats: a model for anorexia in Alzheimers. In: Meyer EM, Simpkins JW, Crews F (eds), Plenum Press, New York, pp (1992).

    Google Scholar 

  6. van Dijk PTM, Dippel DWJ, Habbema JDF. Survival of patients with dementia. J Am Geriatr Soc 39: 603–610 (1991).

    PubMed  Google Scholar 

  7. Burns A, Jacoby R, Luthert P, Levy R. Cause of death in Alzheimer’s disease. Age Aging 19: 341–344 (1990).

    CAS  Google Scholar 

  8. Selkoe D. Biochemistry of altered brain proteins in Alzheimer’s disease. Ann Rev Neurosci 12: 463–490 (1989).

    PubMed  CAS  Google Scholar 

  9. Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer’s type. Brain Res 171: 319–327 (1979).

    PubMed  CAS  Google Scholar 

  10. Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190 (1983).

    PubMed  CAS  Google Scholar 

  11. Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH. Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed Proc 45:2982– 2988 (1986).

    Google Scholar 

  12. Rossor M, Iverson LL. Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Brit Med Bull 42: 70–74 (1986).

    PubMed  CAS  Google Scholar 

  13. Perry EK. Cortical neurotransmitter chemistry in Alzheimer’s disease In: Meltzer HY (ed), Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 887–895 (1987).

    Google Scholar 

  14. Foster AC. Physiology and pathophysiology of excitatory amino acid neurotransmitter systems in relation to Alzheimer’s disease. In: Wurtman RJ, Corkin S, Growdon JH, Ritter-Walker E (eds), Alzheimer’s Disease, Raven Press, New York, pp 97–104 (1990).

    Google Scholar 

  15. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M. Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Brit Med J 288: 961–964 (1984).

    CAS  Google Scholar 

  16. Beal MF, Kowall NW, Mazurek MF. Neuropeptides in Alzheimer’s disease. J Neur-Trans [Suppl] 24: 163–174 (1987).

    CAS  Google Scholar 

  17. Rossor MN. Peptides and dementia. In: Nemeroff CB (ed), Neuropeptides in Pyschiatric and Neurological Disorders. Johns Hopkins University Press, Baltimore, pp 116–136 (1988).

    Google Scholar 

  18. Davies P, Katzman R, Terry RD. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 288: 279–280 (1980).

    PubMed  CAS  Google Scholar 

  19. Beal MF, Mazurek MF, Tran VT, Chattha G, Bird ED, Martin JB. Reduced numbers of somatostatin receptors in the cerebral cortex of Alzheimer’s disease. Science 229: 289–291 (1985).

    PubMed  CAS  Google Scholar 

  20. Delfs JR. Somatostatin and Alzheimer’s disease: possible pathophysiological associations. In: Hutton JT, Kenny AD (eds), Senile Dementia of the Alzheimer Type. Alan Liss Inc, New York, pp 243–261 (1985).

    Google Scholar 

  21. Dawbarn D, Rosser MN, Mountjoy CQ, Roth M, Emson PC. Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cerebral cortex in senile dementia of Alzheimer’s type. Neurosci Lett 70: 154–159 (1986).

    PubMed  CAS  Google Scholar 

  22. Reubi JC, Palacios J. Somatostatin and Alzheimer’s disease: a hypothesis. J Neurol 233: 370–372 (1986).

    PubMed  CAS  Google Scholar 

  23. Reinikainen KJ, Riekkinen PJ, Jolkkonen J, Kosma V-M, Soininen H. Decreased somatostatin-like immunoreactivity in cerebral cortex and cerebrospinal fluid in Alzheimer’s disease. Brain Res 402: 103–108 (1987).

    PubMed  CAS  Google Scholar 

  24. Tamminga CA, Foster NL, Fedio P, Bird ED, Chase TN. Alzheimers disease: low cerebral somatostatin levels correlate with impaired cognitive function and cortical metabolism. Neurology 37: 161–165 (1987).

    PubMed  CAS  Google Scholar 

  25. Atack JR, Beal MF, May C., Kaye JA, Mazurek MF, Kay AD, Rapoport SI. Cerebrospinal fluid somatostatin and neuropeptide Y: concentrations in aging and in dementia of the Alzheimer type with and without extrapyramidal signs. Arch Neurol 45: 269–274 (1988).

    PubMed  CAS  Google Scholar 

  26. Ferrier IN, Cross AJ, Johnson JA, Roberts GW, Crow TJ, Corsellis JAN, Lee YC, O’Shaughnessy D, Adrian TE, McGregor GP, Baracese-Hamilton AJ, Bloom SR. Neuropeptides in Alzheimer type dementia. J Neurol Sci 62: 159–170 (1983).

    PubMed  CAS  Google Scholar 

  27. Nemeroff CB, Bissette G, Busby Jr WH, Youngblood WW, Rossor M, Roth M, Kizer JS. Regional brain concentrations of neurotensin, thyrotropin-releasing hormone and somatostatin in Alzheimer’s disease. Neurosci Abstr 9: 1052 (1983).

    Google Scholar 

  28. Beal MF, Mazurek MF, McKee MA. The regional distribution of somatostatin and neuropeptide Y in control and Alzheimer’s disease striatum. Neurosci Lett 79:201– 206 (1987).

    Google Scholar 

  29. Nemeroff CB, Kizer JS, Reynolds GP, Bissette G. Neuropeptides in Alzheimer’s disease: a postmortem study. Regul Pept 25: 123–130 (1989).

    PubMed  CAS  Google Scholar 

  30. Martin JB, Millard WJ. Brain regulation of growth hormone secretion. J Anim Sci, 63: 11 (1986).

    Google Scholar 

  31. Müller EE. Neural control of somatotropic function. Physiol Rev 67: 962–1053 (1987).

    PubMed  Google Scholar 

  32. Millard WJ. Central regulation of growth hormone secretion. In: Animal Growth Regulation. Campion DR, Martin RJ, Hausman GJ (eds), Plenum Press, NY, pg. 237 (1989).

    Google Scholar 

  33. Isaksson OGP, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endo Rev 8: 426–438 (1987).

    CAS  Google Scholar 

  34. Isaksson OGP, Edén S, Jansson J-O. Mode of action of pituitary growth hormone on target cells. Ann Rev Physiol 47: 483–499 (1985).

    CAS  Google Scholar 

  35. Davidson MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endo Rev 8: 115–130 (1987).

    CAS  Google Scholar 

  36. Boyd RD, Bauman DE. Mechanism of action for somatotropin in growth. In: Campion DR, Martin RJ, Hausman GJ (eds), Animal Growth Regulation. Plenum Press, New York, pp 257–293 (1989).

    Google Scholar 

  37. Ammann AJ. Growth hormone and immunity. In: Underwood LE (ed) Human Growth Hormone: Progresses and Challenges, Marcel Dekker, Inc., New York, pp 243–253 (1986).

    Google Scholar 

  38. Spadoni GL, Rossi W, Galli E, Cianfarani S, Galasso C., Boscherini B. Immune function in growth hormone-deficient children treated with biosynthetic growth hormone. Acta Paediatr Scand 80: 75–79 (1991).

    PubMed  CAS  Google Scholar 

  39. Khansari DN, Gustad T. Effects of long-term, low-dose growth hormone therapy on immune function and life expectancy in mice. Mech Ageing Dev 57: 87–100 (1991).

    PubMed  CAS  Google Scholar 

  40. Rosenfeld RG, Ocrant I, Valentino KL, Hoffman AR. Interaction of IGF with the hypothalamus and pituitary. In: LeRoith D, Raizada MI (eds), Molecular and Cellular Biology of Insulin-like Growth Factors and Their Receptors. Plenum Press, New York pp 39–56, (1989).

    Google Scholar 

  41. Van Wyk JJ, Lund PK. Autocrine and paracrine effects of the somatomedins/insulin-like growth factors. In: LeRoith D, Raizada MI (eds), Molecular and Cellular Biology of Insulin-like Growth Factors and Their Receptors. Plenum Press, New York pp 5– 23, (1989).

    Google Scholar 

  42. Jansson JO, Eden S, Isaksson O. Sexual dimorphism in the control of growth hormone secretion. Endo Rev 6: 128–150 (1985).

    CAS  Google Scholar 

  43. Millard WJ, O’Sullivan DM, Fox TO, Martin JB. Sexually dimorphic patterns of growth hormone secretion. In: The Episodic Secretion of Hormones. Crowley Jr WF, Hofler J (eds), John Wiley and Sons, NY. pp 287–304 (1987).

    Google Scholar 

  44. Finklestein JW, Roffwarg HP, Boyar RM, Kream J, Hellman L. Age-related change in the twenty-four-hour spontaneous secretion of growth hormone. J Clin Endocrinol Metab 35: 665–670 (1972).

    Google Scholar 

  45. Mendelson WB, Lantigua RA, Wyatt RJ, Gillin JC, Jacobs LS. Piperidine enhances sleep-related and insulin-induced growth hormone secretion: further evidence for a cholinergic secretory mechanism. J Clin Endocrinol Metab 52: 409–415 (1981).

    PubMed  CAS  Google Scholar 

  46. Reichlin S. Somatostatin. New Engl J Med 309: 1495–1501 (1983).

    PubMed  CAS  Google Scholar 

  47. Reichlin S. Somatostatin. New Engl J Med 309: 1556–1563 (1983).

    PubMed  CAS  Google Scholar 

  48. Patel YC. Somatostatin. In: Growth Hormone. Growth Factors, and Acromegaly. Ludecke DK, Tolis G (eds), Raven Press, NY, pp 21–36 (1987).

    Google Scholar 

  49. Frohman LA, Jansson J-O. Growth hormone-releasing factor. Endo Rev 7: 223–253 (1986).

    CAS  Google Scholar 

  50. Terry LC, Martin JB. The effects of lateral hypothalamic-medial forebrain stimulation and somatostatin antiserum on pulsatile growth hormone secretion in freely behaving rats: evidence for a dual regulatory mechanism. Endocrinology 109: 622–627 (1981)

    PubMed  CAS  Google Scholar 

  51. Wehrenberg WB, Brazeau P, Luben R, Böhlen P, Guillemin R. Inhibition of the pulsatile secretion of growth hormone by monoclonal antibodies to the hypothalamic growth hormone releasing factor (GRF). Endocrinology 111: 2147–2148 (1982).

    PubMed  CAS  Google Scholar 

  52. Wehrenberg WB, Baird A, Zeytin F, Esch F, Böhlen P, Ling N, Ying SY, Guillemin R. Physiological studies with somatocrinin, a growth hormone-releasing factor. Ann Rev Pharmacol Toxicol 25: 463–483 (1985).

    CAS  Google Scholar 

  53. Tannenbaum GS, Ling N. The interrelationship of growth hormone (GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology 115: 1952–1957 (1984).

    PubMed  CAS  Google Scholar 

  54. Plotsky PM, Vale W. Patterns of growth hormone-releasing factor and somatostatin secretion into the hypophysial-portal circulation in the rat. Science 230: 461–463 (1985).

    PubMed  CAS  Google Scholar 

  55. Miki N, Ono M, Shizume K. Evidence that opiatergic and α-adrenergic mechanisms stimulate rat growth hormone release via growth hormone-releasing factor (GRF). Endocrinology 114: 1950–1952 (1984).

    PubMed  CAS  Google Scholar 

  56. Cordido F, Casanueva FF, Dieguez C. Cholinergic receptor activation by pyridostigmine restores growth hormone (GH) responsiveness to GH-releasing hormone administration in obese subjects: evidence for hypothalamic somatostatinergic participation in the blunted GH release in obesity. J. Clin Endocrinol Metab 68: 290–293 (1989).

    PubMed  CAS  Google Scholar 

  57. Cordido F, Dieguez C, Casanueva FF. Effect of central cholinergic neurotransmission enhancement by pyridostigmine on growth hormone secretion elicited by Clonidine, arginine, or hypoglycemia in normal and obese subjects. J Clin Endocrinol Metab 70: 1361–1370 (1990).

    PubMed  CAS  Google Scholar 

  58. Sonntag WE, Forman LJ, Meites J. Changes in growth hormone secretion in aging rats and man, and possible relation to diminished physiological functions. In: Meites J (ed), Neuroendocrinology of Aging. Plenum Press, New York, pp 275–308 (1983).

    Google Scholar 

  59. Vermeulen A. Nyctohemeral growth hormone profiles in young and aged men: correlation with somatomedin-C levels. J Clin Endocrinol Metab 64: 884–888 (1987).

    PubMed  CAS  Google Scholar 

  60. Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J. Clin Endo Metab 64: 51–58 (1987).

    CAS  Google Scholar 

  61. Simpkins JW, Millard WJ. Influence of age on neurotransmitter function. Endo Metab Clin 16: 893–917 (1987).

    CAS  Google Scholar 

  62. Kelijman M. Age-related alterations of the growth hormone/insulin-like-growth-factor axis. J Am Geriatr Soc 39: 295–307 (1991).

    PubMed  CAS  Google Scholar 

  63. Van Coevorden A, Mockel J, Laurent E, Kerkhofs M, L’Hermite-Balériaux M, Decoster C., Néve P, Van Cauter E. Neuroendocrine rhythms and sleep in aging men. Am J Physiol 260: E651–E661 (1991).

    PubMed  Google Scholar 

  64. Kaler LW, Gliessman P, Craven J, Hill J, Critchlow V. Loss of enhanced nocturnal growth hormone secretion in aging Rhesus males. Endocrinology 119: 1281–1284 (1986).

    PubMed  CAS  Google Scholar 

  65. Klindt J, Ohlson DL, Davis SL, Schanbacher BD. Ontogeny of growth hormone, prolactin, luteinizing hormone and testosterone secretory patterns in the ram. Biol Reprod 33: 436–444 (1985).

    PubMed  CAS  Google Scholar 

  66. Sonntag WE, Steger RW, Forman LJ, Meites J. Decreased pulsatile release of growth hormone in old male rats. Endocrinology 107: 1875–1879 (1980).

    PubMed  CAS  Google Scholar 

  67. Sonntag WE, Forman LJ, Miki N, Steger RW, Ramos T, Arimura A, Meites J. Effects of CNS active drugs and somatostatin antiserum on growth hormone release in young and old male rats. Neuroendocrinology 33: 73–78 (1981).

    PubMed  Google Scholar 

  68. Takahashi S, Gottschall PE, Quigley KL, Goya RG, Meites J. Growth hormone secretory patterns in young, middle-aged and old female rats. Neuroendocrinology 46:137–142(1987).

    Google Scholar 

  69. Millard WJ, Romano TM, Simpkins JW. Growth hormone and thyrotropin secretory profiles and provocative testing in aged animals. Neurobiol Aging 11: 229–235 (1990).

    PubMed  CAS  Google Scholar 

  70. Florini JR, Harned JA, Richman RA, Weiss JP. Effect of rat age on serum levels of growth hormone and somatomedins. Mech Aging Develop 15: 165–176 (1981).

    CAS  Google Scholar 

  71. Hintz RL. Growth hormone, the somatomedins, and aging. In: Underwood LE (ed) Human Growth Hormone: Progresses and Challenges. Marcel Dekker, Inc., New York, pp 219–229 (1986).

    Google Scholar 

  72. Ge F, Tsagarakis S, Rees LH, Besser GM, Grossman A. Relationship between growth hormone-releasing hormone and somatostatin in the rat: effects of age ad sex on content and in-vitro release from hypothalamic explants. J. Endocrinol 123: 53–58 (1989).

    PubMed  CAS  Google Scholar 

  73. Morimoto N, Kawakami F, Makino S, Chihara K, Hasegawa M, Ibata Y. Age-related changes in growth hormone-releasing factor and somatostatin in the rat hypothalamus. Neuroendocrinology 47: 459–464 (1988).

    PubMed  CAS  Google Scholar 

  74. De Gennnaro Colonna V, Zoli M, Cocchi D, Maggi A, Marrama P, Agnati LF, Müller EE. Reduced growth hormone releasing factor (GHRF)-like immunoreactivity and GHRF gene expression in the hypothalamus of aged rats. Peptides 10: 705–708 (1989).

    Google Scholar 

  75. Cocchi D, Parenti M, Ganzetti I, Ingrassia S, Calderini G, Muller EE. Defective growth hormone response to growth hormone releasing factor (GRF). In: Biggio G, Spano PF, Toffano G, Gessa GL (eds), Modulation of Central and Peripheral Transmitter Function. Liviana Press, Padova, pp 331–336 (1986).

    Google Scholar 

  76. Robberecht P, Gillard M, Camus J-C, De Neef P, Christophe J. Decreased stimulation of adenylate cyclase by growth hormone-releasing factor in the anterior pituitary of old rats. Neuroendocrinology 44: 429–432 (1986).

    PubMed  CAS  Google Scholar 

  77. Sonntag WE, Hylka VW, Meites J. Impaired ability of old male rats to secrete growth hormone in vivo but not in vitro in response to hpGRF(1–44). Endocrinology 113:2305–2307(1983).

    Google Scholar 

  78. Sonntag WE, Gough MA. Growth hormone releasing hormone induced release of growth hormone in aging male rats: dependence on pharmacological manipulation and endogenous somatostatin release. Neuroendocrinology 47: 482–488 (1988).

    PubMed  CAS  Google Scholar 

  79. Shibasaki T, Shizume K, Nakahara M, Masuda A, Jibiki K, Demura H, Wakabayashi I, Ling N. Age-related changes in plasma growth hormone response to growth hormone-releasing factor in man. J. Clin Endocrinol Metab 58: 212–214 (1984)

    PubMed  CAS  Google Scholar 

  80. Lang I, Schernthaner G, Pietschumann P, Kurz R, Stephenson JM, Tempi H. Effects of sex and age on growth hormone response to growth hormone-releasing hormone in healthy individuals. J Clin Endocrinol Metah 65: 535–540 (1987).

    CAS  Google Scholar 

  81. Giusti M, Lomeo A, Marini G, Attanasio R, Barreca A, Camogliano L, Peluffo F, Giordanao G. Role of aging on growth hormone and prolactin release after growth hormone-releasing hormone and domperidone in man. Horm Res 27: 134–140 (1987).

    PubMed  CAS  Google Scholar 

  82. Pavlov EP, Harman SM, Merriam GR, Gelato MC, Blackman MR. Responses of growth hormone (GH) and somatomedin-C to GH-releasing hormone in healthy aging men. J Clin Endocrinol Metab 62: 595–600 (1986).

    PubMed  CAS  Google Scholar 

  83. Williams T, Berelowitz M, Joffe SN, Thorner MO, Rivier J, Vale W, Frohman LA. Impaired growth hormone (GH) responses to GH-releasing factor (GRF) in obesity: a pituitary defect reversed with weight reduction. New Engl J Med 311: 1403–1407 (1984).

    PubMed  CAS  Google Scholar 

  84. Gil-Ad I, Gurewitz R, Marcovici O, Rosenfeld J, Laron Z. Effect of aging on human plasma growth hormone response to Clonidine. Mech Ageing Dev 27: 97–100 (1984).

    PubMed  CAS  Google Scholar 

  85. Sonntag WE, Forman LJ, Miki N, Trapp JM, Gottschall PE, Meites J. L-Dopa restores amplitude of growth hormone pulses in old male rats to that observed in young male rats. Neuroendocrinology 34: 163–168 (1982).

    PubMed  CAS  Google Scholar 

  86. Sonntag WE, Boyd RL, Booze RM. Somatostatin gene expression in the hypothalamus and cortex of aging male rats. Neurobiol Aging 11: 409–416 (1990).

    PubMed  CAS  Google Scholar 

  87. Sonntag WE, Gottschall PE, Meites J. Increased secretion of somatostatin-28 from hypothalamic neurons of aged rats in vitro. Brain Res 380: 229–234 (1986).

    PubMed  CAS  Google Scholar 

  88. Spik K, Sonntag WE. Increased pituitary response to somatostatin in aging male rats: relationship to somatostatin receptor number and affinity. Neuroendocrinology 50: 489–494 (1989).

    PubMed  CAS  Google Scholar 

  89. Kalk WJ, Vinik AI, Pimstone BL, Jackson WPU. Growth hormone response to insulin hypoglycemia in the elderly. J Gerontol 28: 431–433 (1973).

    PubMed  CAS  Google Scholar 

  90. Dudl RJ, Ensinck JW, Palmer HE, Williams RH. Effect of age on growth hormone secretion in man. J Clin Endocrinol Metab 37: 11–16 (1973).

    PubMed  CAS  Google Scholar 

  91. Shibasaki T, Hotta M, Masuda A, Imaki T, Obara N, Demura H, Ling N, Shizume K. Plasma GH responses to GHRH and insulin-induced hypoglycemia in man. J Clin Endocrinol Metab 60: 1265–1267 (1985).

    PubMed  CAS  Google Scholar 

  92. Alba-Roth J, Müller OA, Schophl J, von Werder K. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metah 67: 1186–1189 (1988).

    CAS  Google Scholar 

  93. Richardson SB, Hollander CS, D’Eletto R, Greenleaf PW, Thaw C. Acetylcholine inhibits the release of somatostatin from rat hypothalamus in. vitro. Endocrinology 107: 122–129 (1980).

    PubMed  CAS  Google Scholar 

  94. Ghigo E, Goffi S, Arvat E, Nicolosi M, Procopio M, Bellone J, Imperiale E, Mazza E, Baracchi G, Camanni F. Pyridostigmine partially restores the GH responsiveness to GHRH in normal aging. Acta Endocrinol 123: 169–174 (1990).

    PubMed  CAS  Google Scholar 

  95. McGeer EG, McGeer PL. Age changes in the human for some enzymes associated with metabolism of catecholamines GABA and acetylcholine. In: Ordy JM, Brizzee KR (eds) Neurobiology of Aeing. Plenum Press, New York, pp 287–305 (1975).

    Google Scholar 

  96. Pedigo Jr NW, Minor LD, Krumrei TN. Cholinergic drug effects and brain muscarinic receptor binding in aged rats. Neurobiol Aging 5: 227–233 (1984).

    PubMed  CAS  Google Scholar 

  97. Thienhaus OJ, Zemlan FP, Bienenfeld D, Hartford JT, Bosmann HB. Growth hormone response to edrophonium in Alzheimer’s disease. Am J Psychiatr 144:1049– 1052 (1987).

    Google Scholar 

  98. Thomas DR, Hailwood R, Harris B, Williams PA, Scanlon MF, John R. Thyroid status in senile dementia of the Alzheimer’s type (SDAT) Acta psychiatr scand 76: 158–163 (1987).

    PubMed  CAS  Google Scholar 

  99. Christie JE, Whalley LJ, Bennie J, Dick H, Blackburn IM, Blackwood DHR, Fink G. Characteristic plasma hormone changes in Alzheimer’s disease. Br J Psychiatr 150: 674–681 (1987).

    CAS  Google Scholar 

  100. Christie JE, Whalley LJ, Bennie J, Dick H, Blackwood DHR, Fink G. Neuroendocrine changes in Alzheimer’s disease: raised plasma concentrations of growth hormone and thyroid stimulating hormone and reduced concentrations of oestrogen-stimulated neurophysin. In Fink G, Harmar AJ, McKerns KW (eds), Neuroendocrine Molecular Biology. Plenum Press, New York, pp 457–464 (1985).

    Google Scholar 

  101. Sara VR, Hall K, Enzell K, Gardner A, Morawski R, Wetterberg L. Somatomedins in aging and dementia disorders of the Alzheimer type. Neurobiol Aging 3: 117–120 (1982).

    PubMed  CAS  Google Scholar 

  102. Christie JE, Brown NS, Dick H, Rosie R, Sanches-Watts G. Neuroendocrine function in Alzheimer’s disease. Interdiscipl Topics Geront 19: 131–142 (1985).

    CAS  Google Scholar 

  103. Davis BM, Mohs RC, Greenwald BS, Mathé AA, Johns CA, Horvath TB, Davis KL. Clinical studies of the cholinergic deficit in Alzheimer’s disease. I. Neurochemical and neuroendocrine studies. J Am Geriatr Soc 33: 741–748 (1985).

    PubMed  CAS  Google Scholar 

  104. Davis BM, Levy MI, Rosenber GS, Mathé A, Davis KL. Relationship between growth hormone and Cortisol and acetylcholine: a possible neuroendocrine strategy for assessing a cholinergic deficit. In Corkin S, Davis KL, Growden JH, Usdin E, Wurtman RJ (eds) Alzheimer’s Disease: A Report of Progress in Research. Raven Press, New York, pp 55–62 (1982).

    Google Scholar 

  105. Davidson M, Davis BM, Bastiaens L, Macaluso J, Aryan M, Ryan T, Davis KL. Growth hormone response to edrophonium in patients with Alzheimer’s disease and normal control subjects. Am J Psychiatr 145: 1007–1009 (1988).

    PubMed  CAS  Google Scholar 

  106. Mohs RC, Davis BM, Greenwald BS, Mathé AA, Johns CA, Horvath TB, Davis KL. Clinical studies of the cholinergic deficit in Alzheimer’s disease. II. Psychopharmacologic studies. J Am Geriatr Soc 33: 749–757 (1985).

    PubMed  CAS  Google Scholar 

  107. Gilles C, Ryckaert P, De Mol J, de Maertelaere V, Mendlewicz J. Clonidine-induced growth hormone secretion in elderly patients with senile dementia of the Alzheimer type and major depressive disorder. Psychiatr Res 27: 277–286 (1989).

    CAS  Google Scholar 

  108. Franceschi M, Perego L, Ferini-Strambi L, Smirne S, Canal N. Neuroendocrinological function in Alzheimer’s Disease. Neuroendocrinology 48: 367–370 (1988).

    PubMed  CAS  Google Scholar 

  109. Nemeroff CB, Krishnan KRR, Belkin BM, Ritchie JC, Clark C., Vale WW, Rivier JE, Thorner MO. Growth hormone response to growth hormone releasing factor in Alzheimer’s disease. Neuroendocrinology 50: 663–666 (1989).

    PubMed  CAS  Google Scholar 

  110. Thomas R, Williams P, John R, Scanlon M. Growth hormone responses to growth hormone releasing factor in primary degenerative dementia. Biol Psychiatr 26:389– 396 (1989).

    Google Scholar 

  111. Cacabelos R, Niigawa H, Dcemura Y, Yanagi Y, Tanaka S, Rodríguez-Arnao MD, Gómez-Pan A, Nishimura T. GHRH-induced GH response in patients with senile dementia of the Alzheimer type. Acta Endocrinol 117: 295–301 (1988).

    PubMed  CAS  Google Scholar 

  112. Lesch KP, Ihl R, Frolich L, Rupprecht R, Muller U, Schulte HM, Maurer K. Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer’s disease. Psychiatr Res 33: 107–112 (1990).

    CAS  Google Scholar 

  113. Lal S, Nair NPV, Thavundayil JX, Tawar V, Tesfaye Y, Dastoor D, Gauthier S, Guyda H. Growth hormone response to apomorphine, a dopamine receptor agonist, in normal aging and in dementia of the Alzheimer type. Neurobiol Aging 10: 227–231 (1989).

    PubMed  CAS  Google Scholar 

  114. Peabody CA, Minkoff JR, Davies HD, Winograd CH, Yesavage J, Tinklenberg JR. Thyrotropin-releasing hormone stimulation test and Alzheimer’s disease. Biol Psychiatr 21: 553–556 (1986).

    CAS  Google Scholar 

  115. Kolata G. New growth industry in human growth hormone. Science 234: 22–24 (1986).

    PubMed  CAS  Google Scholar 

  116. Haupt HA. Drugs in athletics. Clin Sports Med 8: 561–582 (1989).

    PubMed  CAS  Google Scholar 

  117. Bradley CA, Sodeman TM. Human growth hormone; its use and abuse. Clin Lab Med 10: 473–477 (1990).

    PubMed  CAS  Google Scholar 

  118. Jørgensen JOL. Human growth hormone replacement therapy: pharmacological and clinical aspects. Endo Rev 12: 189–207 (1991).

    Google Scholar 

  119. Herndon DN, Barrow RE, Kunkel KR, Broemeling L, Rutan RL. Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 212: 424–431 (1990).

    PubMed  CAS  Google Scholar 

  120. Manson J, Wilmore DW. Growth hormone in the surgical patient. In: Underwood LE (ed) Human Growth Hormone: Progresses and Challenges. Marcel Dekker, Inc., New York, pp 255–272 (1986).

    Google Scholar 

  121. Ziegler TR, Young LS, Manson JM, Wilmore TR. Metabolie effects of recombinant human growth hormone in patients receiving parenteral nutrition. Ann Surg 208: 6–16 (1988).

    PubMed  CAS  Google Scholar 

  122. Christensen H, Oxlund H, Laurberg S. Growth hormone increases the bursting strength of colonic anastomoses: an experimental study in rats. Int J Colorect Dis 5:130–134(1990).

    Google Scholar 

  123. Zaizen Y, Ford EG, Costin G, Atkinson JB. Stimulation of wound bursting strength during protein malnutrition. J Surg Res 49: 333–336 (1990).

    PubMed  CAS  Google Scholar 

  124. Clemmons DR, Underwood LE. Growth hormone as a potential adjunctive therapy for weight loss. In: Underwood LE (ed) Human Growth Hormone: Progresses and Challenges. Marcel Dekker, Inc., New York, pp 207–217 (1986).

    Google Scholar 

  125. Blizzard RM, Balian G, Nelson DL, Savory J, Vaswani AN, Aloia JF, Cohn SH, Johanson AJ, Sutphen E. Pilot studies evaluating the role of growth hormone in the aging process. In: Underwood LE (ed) Human Growth Hormone: Progresses and Challenges. Marcel Dekker, Inc., New York, pp 231–241 (1986).

    Google Scholar 

  126. Binnerts A, Wilson JHP, Lamberts SWJ. The effects of human growth hormone administration in elderly adults with recent weight loss. J Clin Endocrinol Metab 67:1312–1316(1988).

    Google Scholar 

  127. Kaiser FE, Silver AJ, Morley JE. The effect of recombinant human growth hormone on malnourished older individuals. J Am Geriatr Soc 39: 235–240 (1991).

    PubMed  CAS  Google Scholar 

  128. Marcus R, Butterfield G, Holloway L, Gilliland L, Baylink DJ, Hintz RL, Sherman BM. Effects of short term administration of recombinant human growth hormone to elderly people. J Clin Endocrinol Metab 70: 519–527 (1990).

    PubMed  CAS  Google Scholar 

  129. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. New Engl J Med 323: 1–9 (1990).

    PubMed  CAS  Google Scholar 

  130. Vance ML. Growth hormone for the elderly? New Engl J Med 323: 52–54 (1990).

    PubMed  CAS  Google Scholar 

  131. Editorial. Effects of human growth hormone in men over 60 years old. New Engl J Med 323: 1561–1563 (1990).

    Google Scholar 

  132. Walker C. Human growth hormone: the fountain of youth? Geriatrics 45: 18–19 (1990).

    PubMed  CAS  Google Scholar 

  133. Editorial. Growth hormone therapy in elderly people. The Lancet 337: 1131–1132 (1991).

    Google Scholar 

  134. Ishii A, Kakuta K, Tsuchiya S, Konno T. Chronic myelocytic leukemia probably promoted by growth hormone. Toh J Exp Med 158: 263–264 (1989).

    CAS  Google Scholar 

  135. Arslanian SA, Becker DJ, Lee PA, Drash AL, Foley Jr TP. Growth hormone therapy and tumor recurrence: findings in children with brain neoplasms and hypopituitarism. Am J Dis Child 139: 347–350 (1985).

    PubMed  CAS  Google Scholar 

  136. Torosian MH, Donoway RB. Growth hormone inhibits tumor metastasis. Cancer 67: 2280–2283 (1991).

    PubMed  CAS  Google Scholar 

  137. Ullman M, Ullman A, Sommerland H, Skottner A, Oldfors A. Effects of growth hormone on muscle regeneration and IGF-1 concentration in old rats. Acta Physiol Scand 140: 521–525 (1990).

    PubMed  CAS  Google Scholar 

  138. Kanje M, Skottner A, Lundborg G. Effects of growth hormone treatment on the regeneration of sciatic nerve. Brain Res 475: 254–258 (1988).

    PubMed  CAS  Google Scholar 

  139. Cooper JK. Drug treatment of Alzheimer’s disease. Arch Intern Med 151: 245–249 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Millard, W.J. (1992). Potential Therapeutic Use of Growth Hormone in the Metabolic Treatment of Alzheimer’s Disease.. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics