Skip to main content

Unique Aspects of Muscarinic Receptor Stimulated Inositol Polyphosphate Formation in Brain: Changes in Senescence

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 40))

Abstract

The agonist dependent hydrolysis of membrane phosphoinositides is a major signal transduction pathway in brain (Berridge 1985; Crews et al. 1988a). A variety of receptors including muscarinic cholinergic, α1-adrenergic, serotonergic, and a variety of peptides, couple to phosphoinositide hydrolysis via activation of phospholipase C (Berridge 1985, Gonzales and Crews 1985). Hydrolysis of one of these phosphoinositides, phosphatidylinositol 4,5-bisphosphate [PtdIns(4, 5)P2] results in the formation of 1,2 diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], both of which appear to have second messenger functions (Batty et al., 1989; Berridge and Irvine, 1989; Rana and Hokin, 1990). DAG remains in the membrane where it can activate protein kinase C (PKC), a family of calcium/phospholipid dependent kinases, that regulate numerous cellular functions and may play a role in neuronal plasticity and neuronal cell death. Ins(1,4,5)P3 is released into the cytoplasm where it binds to specific receptors on the endoplasmic reticulum and releases intracellular Ca2+ into the cytoplasm. Specific phosphomonoesterases can rapidly metabolize Ins(1,4,5)P3 to inositol 1,4-bisphosphate, inositol 4-monophosphate and finally to free inositol via sequential dephosphorylation (Fig. 1). Ins(1,4,5)P3 can be phosphorylated to Ins(1,3,4,5)P4 by a specific Ca2+/calmodulin sensitive 3-kinase (Batty et al., 1985; Irvine et al., 1986). Ins(1,3,4,5)P4 may also be a second messenger involved in a variety of functions including the Ca2+ influx (Irvine et al., 1986), release of intracellular Ca2+ (Gawler et al., 1990) and sequestration of Ca2+ released by Ins(1,4,5)P3 (Hill and Boynton, 1990; Boynton et al., 1990). Ins(1,3,4,5)P4 is dephosphorylated by a 5-phosphatase to inositol 1,3,4-trisphosphate, an inactive isomer. In addition, a variety of cyclic inositol phosphates are produced by the action of phospholipase C on phosphoinositides. The cyclic inositol phosphates accumulate on prolonged agonist stimulation but their cellular functions are not clear (Bansal and Majerus, 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball MJ (1987) Morphometric analyses of neuronal populations and dendritic extent in normal aging and dementia of Alzheimer type: a frank appraisal of the difficulties. Neurobiol Aging 8: 564–565

    Article  PubMed  CAS  Google Scholar 

  • Bansal VS and Majerus PW (1990) Phosphatidylinositol derived precursors and signals. Annu Rev Cell Biol 6: 41–67

    Article  PubMed  CAS  Google Scholar 

  • Batty IH, Letcher AJ, Nahorski SR (1989) Accumulation of inositol polyphosphate isomers in agonist stimulated cerebral cortex slices: comparison with metabolic profiles in cell free preparations. Biochem J 258: 23–32

    PubMed  CAS  Google Scholar 

  • Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232: 211–215

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1985) The molecular basis of communication within the cell. Sci Am 253 (4): 142–152

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197– 205

    Article  PubMed  CAS  Google Scholar 

  • Boynton AL, Dean NM, Hill TD (1990) Inositol 1,3,4,5-tetrakisphosphate and regulation of intracellular calcium. Biochem Pharmacol 40: 1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Challiss RAJ, Batty IH, Nahorski SR (1988) Mass measurements of inositol-(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun 157: 684–691

    Article  PubMed  CAS  Google Scholar 

  • Challiss RAJ, Nahorski SR (1990) Neurotransmitter and depolarization stimulated accumulation of inositol 1,3,4,5-tetrakisphosphate mass in rat cerebral cortex slices. J. Neurochem 54: 2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Gonzales RA, Palovcik R, Phillips MI, Theiss C., Raizada MK (1986) Changes in receptor stimulated phosphoinositide hydrolysis in brain during ethanol administration, aging and other pathological conditions. Psychopharmacol Bull 22: 775–780

    PubMed  CAS  Google Scholar 

  • Crews FT, Chandler LJ, Calderini G, Meyer M (1988b) Changes in membrane and calcium mediated changes in senescence. In: Psychoendocrinology of Aging: Basic and Clinical Aspects, G Valenti, ed., Fidia Research Series, 16: 7–15, Liviana Press, Padova, Italy

    Google Scholar 

  • Crews FT, Gonzales RA, Raulli R, McElhaney R, Pontzer N, Raizada MK (1988a) Interaction of calcium with receptor stimulated phosphoinositide hydrolysis in brain and liver. Annals New York Acad Sci 522: 88–95

    Article  CAS  Google Scholar 

  • Donie F, Reiser G (1989) A novel, specific binding protein assay for quantitation of intracellular inositol 1,3,4,5-tetrakisphosphate (InsP4) using a high-affinity InsP4 receptor from cerebellum. FEBS Lett 254: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Gawler DJ, Potter BVL, Nahorski SR (1990) Inositol 1,3,4,5-tetrakisphosphate induced release of intracellular Ca2+ in SH-SY5Y neuroblastoma cells. Biochem J 272: 519– 524

    PubMed  CAS  Google Scholar 

  • Gonzales RA, Crews FT (1985) Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem J 232: 799–804

    PubMed  CAS  Google Scholar 

  • Gonzales RA, Theiss C, Crews FT (1986) Effects of ethanol on stimulated inositol phospholipid hydrolysis in rat brain. J Pharmacol Exp Ther 237: 92–97

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Hill TD, Boynton AL (1990) Inositol tetrakisphosphate-induced sequestration of Ca2+ replenishes an intracellular pool sensitive to inositol trisphosphate. J. Cell Physiol 142: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF, Moor RM (1986) Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240: 917– 920

    PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8: 345–346

    Article  PubMed  CAS  Google Scholar 

  • Kelly E, Batty I, Nahorski SR (1988) Dopamine stimulation does not affect phosphoinositide hydrolysis in slices of rat striatum. J Neurochem 51: 918 - 924

    Article  PubMed  CAS  Google Scholar 

  • Kennedy ED, Challiss RAJ, Ragan CI, Nahorski SR (1990) Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem J 267: 781–786

    PubMed  CAS  Google Scholar 

  • Landfield PW, Pitler TA (1984) Prolonged Ca2+ dependent after hyperpolarization in hippocampal neurons of aged rats. Science 226: 1089–1092

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Vitorica J, Satrustegui J (1988) Cytosolic free calcium levels increase with age in rat brain synaptosomes. Neurosci Lett 88: 336–342

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 2: 105–117

    Article  Google Scholar 

  • McKinney M, Anderson DJ, Vella-Rountree L, Connolly T, Miller JH (1991) Pharmacological profiles for rat cortical M1 and M2 muscarinic receptors using selective antagonists: Comparison with NlE-115 muscarinic receptors. J Pharmacol Exp Ther 257: 1121–1129

    PubMed  CAS  Google Scholar 

  • McPherson GA (1983) A practical computer based approach to the analysis of radioligand binding experiments. Computer Programs Biomed 17: 107–114

    Article  CAS  Google Scholar 

  • Meyer EM, Crews FT, Otero DH, Larsen K (1986) Aging decreases the sensitivity of rat cortical synaptosomes to calcium ionophore-induced acetylcholine release. J. Neurochem 47: 1244–1246

    Article  PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: A versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107: 220–239

    Article  PubMed  CAS  Google Scholar 

  • Nahorski SR, Kendall DA, Batty I (1986) Receptors and phosphoinositide metabolism in the central nervous system. Biochem Pharmacol 35: 2447–2453

    Article  PubMed  CAS  Google Scholar 

  • Peterson C., Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83: 7999–8001

    Article  PubMed  CAS  Google Scholar 

  • Rana RS, Hokin LE (1990) Role of phosphoinositides in transmembrane signaling. Physiol Rev 70: 115–164

    PubMed  CAS  Google Scholar 

  • Siman R, Card JP, Davis LG (1990) Proteolytic processing of β-amyloid precursor by calpain I. J Neurosci 10: 2400–2411

    PubMed  CAS  Google Scholar 

  • Surichamorn W, Abdallah EAM and El-Fakahany E E (1989) Aging does not alter brain muscarinic receptor mediated phosphoinositide hydrolysis and its inhibition by phorbol esters, tetrodotoxin and receptor desensitization. J. Pharmacol Exp Ther 251: 543–549

    PubMed  CAS  Google Scholar 

  • Terry RD, Peck A, DeTeresa R, Scechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184– 192

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Masliah E, Saitoh T, Bakalis SL, Scoble H, Kosik KS (1990) Alz-50 recognizes a phosphorylated epitope of Tau protein. J Neurosci 10: 3295–3304

    PubMed  CAS  Google Scholar 

  • Whitworth P, Kendall DA (1988) Lithium selectively inhibits muscarinic receptor stimulated inositol tetrakisphosphate accumulation in mouse cerebral cortex slices. J. Neurochem 51: 258–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kurian, P., Chandler, L.J., Gerber, M., McKinney, M., Miller, J.H., Crews, F.T. (1992). Unique Aspects of Muscarinic Receptor Stimulated Inositol Polyphosphate Formation in Brain: Changes in Senescence. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics