Skip to main content

Brain Targeted Delivery of Neurotransmitters: Use of a Redox Based Chemical Delivery System

  • Chapter
Treatment of Dementias

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 40))

  • 82 Accesses

Abstract

The targeting of drug to the central nervous system (CNS) is of paramount importance in the treatment chronic diseases of the brain. Alzheimer’s disease (AD) is one such neurodegenerative disease that affects 5% to 10% of the population greater than the age of 65 years1,2 and the incidence of AD increases progressively between the ages of 65 and 85 years.3,4 This degenerative disease is a progressive disorder that leads to the death of the patient some 5 to 7 years after its clinical diagnosis. As such, effective therapy that would extend the life of the AD patient, would require treatment regimens that last years if not decades. The selective delivery of efficacious drugs to the affected organ, the brain, will thus be essential for effective, chronic pharmacotherapy of this neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Katzman, Alzheimer’s disease, New Eng. J. Med. 314: 964 (1986).

    Article  CAS  Google Scholar 

  2. J.A. Mortimer, L.M. Schuman and L.R. French, Epidemiology of dementing illness in: The Epidemiology of Dementia. Eds. J.A. Mortimer and L.M. Schuman, Oxford University Press, p. 3 (1981).

    Google Scholar 

  3. D.A. Evans, H. Funkenstein, M.S. Albert, P.A. Scherr, N.R. Cook, M.J. Chown, L.E. Herbert, C.H. Henneskens, and J.O. Taylor, J. Am. Med.Assoc. 262: 2551 (1989).

    Article  CAS  Google Scholar 

  4. R. Sulkava, J. Wikstom, A. Aromaa, R. Raitasalo, V. Lehtinen, K. Lahhtela and J. Palo. Neurology 35:1025 (19851

    Google Scholar 

  5. J.W. Simpkins and N. Bodor. Brain-Enhanced Drug Delivery Systems of the Treatment of Dementia in: Alzheimer’s Disease: New Treatment Strategies, Eds. Z.S. Khachaturian and J. Blass, Marcell Dekker, Inc., New York, (in Press, 1991 ).

    Google Scholar 

  6. W.H. Mohs, R.E. Davis, R.D. Schwartz and E.R. Gamzer, Cognition Med. Res. Rev. 8: 353 (1988).

    Article  Google Scholar 

  7. R.E. Becker and E. Giacobini. Dev. Res. 12: 163 (1988).

    CAS  Google Scholar 

  8. W.W. Pardridge, J.D. Connor and I.L. Crawford. Permeability changes in the blood-brain barrier: causes and consequences. CRC Crit. Rev. Toxic. 3: 159 (1975).

    Article  CAS  Google Scholar 

  9. E. Levin. Are the terms blood-brain barrier and brain capillary permeability synonymous. Exp. Eye Res. 25: 191 (1977).

    Article  Google Scholar 

  10. B. van Duers. Structural aspects of brain barriers with special reference to the permeability synonymous. Exp. Eye Res. 25: 191 (1977).

    Article  Google Scholar 

  11. H. Davson. The blood-brain barrier. J. Phvsiol. Lond. 255: 1 (1976).

    CAS  Google Scholar 

  12. M.W. Brightman and T.S. Reese. Junctions between immediately opposed cerebral membranes in the vertebrate brain. J. Cell Biol. 40: 648 (1969).

    Article  PubMed  CAS  Google Scholar 

  13. W.H. Oldendorf. The blood-brain barrier. Exp. Eve Res. 25: 177 (1977).

    Article  CAS  Google Scholar 

  14. R.R. Shivers. The blood-brain barrier of a reptile, Anolis Carolinensis. A freeze-fracture study. Brain Res. 169: 221 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. M.W. Brightman. Morphology of blood-brain interfaces. Exp. Eye Res. 25: 1 (1977).

    Article  PubMed  Google Scholar 

  16. R.D. Broadwell and M. Saloman. Expanding the definition of the blood-brain barrier to proteins. Proc. Natl. Acad. Sci. U.S.A. 78: 7820 (1981).

    Article  CAS  Google Scholar 

  17. J.E. Hardebo, B. Falek, C. Owman and E. Rosengren. Studies on the enzymatic blood-brain barrier: quantitative measurement of DOPA decarboxylase in the wall of microvessels as related to parenchyma in various CNS regions. Acta Physiol. Scand. 105: 453 (1979).

    CAS  Google Scholar 

  18. J.E. Hardebo and C. Owman. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann. Neurol. 8: 1 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. G.P. Kaplan, B.K. Hartman and C.R. Creveling. Immunohistochemical localization of catechol-o-methytransferase in circumventricular organs of the rat: potential variations in the blood-brain barrier to native catechols. Brain Res. 229: 323 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. S.I. Rapoport. The Blood-Brain Barrier in Physiology and Medicine. Raven Press, New York, 1976.

    Google Scholar 

  21. S.I. Rapoport, M. Ohata and E.D. London. Cerebral blood flow and glucose utilization following opening of the blood-brain and during maturation of the rat brain. Proc. Am. Soc. Exp. Biol. 40:2322 (19811

    Google Scholar 

  22. W.M., Pardridge. Transport of nutrients and hormones through the blood-brain barrier. Diabetojogia 20: 246 (1981).

    Article  Google Scholar 

  23. H. Lund-Andersen. Transport of glucose from blood to brain. Physiol. Rev. 59: 305 (1979).

    PubMed  CAS  Google Scholar 

  24. H.N. Christensen. Developments in amino acid transport. Illustrated for the bloodbrain barrier. Biochem. Pharmacol. 28: 1989 (1979).

    Google Scholar 

  25. M. Pollay and F.A. Stevens. Starvation-induced changes in transport of ketone bodies across the blood-brain barrier. J. Neurosci. Res. 5: 163 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. E.M. Cornford, L.D. Braun and W.H. Oldendorf. Carrier mediated blood-brain barrier transport of choline and certain analogs. J. Neurochem. 30: 299 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. L.D. Braun, E.M. Cornford and W.H. Oldendorf. Newborn rabbit blood-brain barrier is selectively permeable and differs substantial from the adult. J. Neurochem. 34: 147 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. W.M. Pardridge and L.J. Meitus. Transport of thyroid and steroid hormones through the blood-brain barrier of new-born rabbits: primary role of protein-bound hormones. Endocrinol. 107: 1705 (1980).

    Article  CAS  Google Scholar 

  29. S.I. Rapoport, W.A. Kleck, K.D. Pattigrew and K. Ohno. Entry of opioid peptides into the central nervous system. Science 207: 84 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. W.M. Pardridge and L.J. Meitus. Transport of albbbumin-bound melatonin through the blood-brain barrier. J. Neurochem. 34: 1761 (1980).

    Article  PubMed  CAS  Google Scholar 

  31. A.J. Kastin, C. Nissen, A.V. Schally and D.H. Coy. Additional evidence that small amounts of a peptide can cross the blood-brain barrier. Pharmac. Biochem. Behav. 11: 717 (1979).

    Google Scholar 

  32. A.A. Sinkula and S.H. Yalkowsky. Rationale for design of biologically reversible drug derivatives: Prodrugs. J. Pharm. Sci. 64: 181 (1975).

    Article  PubMed  CAS  Google Scholar 

  33. N. Bodor. The soft drug approach. Chemtech Jan: 28 (1984).

    Google Scholar 

  34. N. Bodor. Novel approaches in prodrug design. Drugs of the Future 6: 165 (1981).

    Google Scholar 

  35. N. Bodor. Soft drugs: Principles and methods for the design of safe drugs. Med. Res. Reviews 4: 449 (1984).

    Article  CAS  Google Scholar 

  36. V. Stella. Prodrugs: an overview and definition, in Prodrugs as Novel Drug Delivery Systems. Eds. T. Higuchi and V. Stella, ACS Symposium Series, Vol. 14, American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  37. R.D. Smyth, M. Pfeffer, D.R. Van Hanker, A.Cohen and G.H. Hottendorf. Human pharmacokinetics and disposition of sarmoxicillin, a lipophilic amoxicillin prodrug. A.timicrob. Ag. Chemother. 1004 (1981).

    Google Scholar 

  38. H. Ferres. Pro-drugs of B-lactam antibiotics. Chem. Ind. 11: 436 (1980).

    Google Scholar 

  39. T.A. Connors. Possible pro-drugs in cancer chemotherapy. Chem. Ind. 11: 447 (1980).

    Google Scholar 

  40. M. Masquelier, R. Baurain and A. Trouet. Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physiochemical properties and lysosomal digestion. J. Med. Chem. 23: 1166 (1980).

    Article  PubMed  CAS  Google Scholar 

  41. P. Workman and J.A. Double. Drug latentiation in cancer chemotherapy. Biomedicine 28: 255 (1978).

    PubMed  CAS  Google Scholar 

  42. N. Bodor, E. Shek and T. Higuhi. Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative. Science 190: 155 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. N. Bodor, H. Farag and ME. Brewster. Site-specific sustained release of drugs to the brain. Science 214: 1370 (1981).

    Article  PubMed  CAS  Google Scholar 

  44. N. Bodor and H. Farag. Improved delivery through biological membranes. XI. A redox chemical drug delivery system and its use for brain specific delivery of phenethylamine. J. Med. Chem. 26: 313 (1983).

    Article  PubMed  CAS  Google Scholar 

  45. N. Bodor and J.W. Simpkins. Redox delivery system for brain-specific sustained release of dopamine. Science 221: 65 (1983).

    Article  PubMed  CAS  Google Scholar 

  46. J.W. Simpkins, N. Bodor and A. Enz. Direct evidence for brain specific release of dopamine from a redox delivery system. J. Pharm. Sci. 94: 1033 (1985).

    Article  Google Scholar 

  47. N. Bodor and H. Farag. Improved delivery through biological membranes XIII. Brain specific delivery of dopamine with a dihydropyridine-pyridinium salt type redox delivery system. J. Med. Chem. 26: 528 (1983).

    Article  CAS  Google Scholar 

  48. N. Bodor and M.E. Brewster. Improved delivery through biological membranes, XV Sustained brain delivery of berberine. Eur. J. Med. Chem. 18: 235 (1983).

    CAS  Google Scholar 

  49. A. El-Koussi and N. Bodor. . Drug Design and Delivery 1: 275 (1987).

    PubMed  CAS  Google Scholar 

  50. N. Bodor and M.E. Brewster. Problems of delivery of drugs to the brain. Pharmacol. Therapeut. 19: 337 (1983).

    Article  CAS  Google Scholar 

  51. W. Anderson, J. Simpkins, P. Woodard, D. Winwood, W. Stern and N. Bodor. Anxiolytic activity of a brain-specific GABA delivery system. Psychopharmacology 92: 157 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. M.E. Brewster, C. Robledo-Luiggi, A. Miyakeb, E. Pop and N. Bodor. Brainenhanced delivery of anti-dementia drugs, in Novel Approaches to Treatment of Alzheimer’s Disease. Eds., E.M. Meyer, J.W. Simpkins and J. Yamamoto, Plenum Press, New York, pp. 173–183 (1989).

    Google Scholar 

  53. J.W. Simpkins, J. McCornack, K.S. Estes, M.E. Brewster, E. Shek and N. Bodor. Sustained brain-specific delivery of estradiol causes long-term suppression of luteinizing hormone secretion. J. Med. Chem. 29: 1809 (1986).

    Article  CAS  Google Scholar 

  54. M.E. Brewster, J.W. Simpkins and N. Bodor. Brain-targeted delivery of estrogens. Reviews in the Neurosciences 2: 241 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. W. Anderson, J.W. Simpkins, M.E. Brewster and N. Bodor. Brain-enhanced delivery of testosterone using a chemical delivery system complexed with 2-hydroxy-propyl-Ăź-cyclodextrin. Drug Design and Delivery 2: 287 (1988).

    PubMed  CAS  Google Scholar 

  56. W. Anderson, J.W. Simpkins, M.E. Brewster and N. Bodor. Evidence for prolonged suppression of stress-induced release of ACTH and corticosterone with a brain-enhanced dexamethasone-redox delivery system. Neuroendocrinolology 50: 9 (1989).

    Article  CAS  Google Scholar 

  57. B.E. Roos and G. Steg. Life Sci. 3: 351 (1964).

    Article  PubMed  CAS  Google Scholar 

  58. H. Ehringer and O. Hornykiewicz. Klin Wochenschr. 38: 1236 (1960).

    Article  PubMed  CAS  Google Scholar 

  59. E.E. Tomlinson, D. Irving and G. Blessed. Cell loss in the locus coeruleus in senile dementia of Alzheimer’s type. J. Neurol. Sci. 49: 419 (1981).

    Article  CAS  Google Scholar 

  60. A.J. Cross, T.J. Crow, E.K. Perry, G. Blessed and B.E. Tomlinson. Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Brit. Med. J. 282: 93 (1981).

    Article  CAS  Google Scholar 

  61. R.M. MacLeod. Regulation of prolactin secretion, in Frontiers in Neuroendocrinology. Vol. 4, Ed. L. Martini and W.F. Ganong, Raven Press, N.Y., pp. 169 (1976).

    Google Scholar 

  62. R.H. Roth. CNS dopamine autorecetors: distribution, pharmacology and function. Ann. N.Y. Acad. Sci. 430: 27 (1984).

    Article  PubMed  CAS  Google Scholar 

  63. K. Amezer and K.E. Moore. Effects of drugs on regional brain concentrations of dopamine and dopac. J. Pharmacol. Exp. Ther. 208: 49 (1979).

    Google Scholar 

  64. R.Y. Moore and F.E. Bloom. Central catecholamine neuron systems: Anatomy and physiology of dopamine systems. Ann. Rev. Neurosci. 1: 129 (1978).

    Article  PubMed  CAS  Google Scholar 

  65. I.J. Kopin, G.R. Breeze, K.R. Krauss and V.K. Weise. J. Pharmacol. Exp. Ther. 161: 271 (1968).

    CAS  Google Scholar 

  66. D. Weiner, F.C. Bove, R. Bjur, G. Cloutier and S.Z. Langer. In: New Concepts in Neurotransmitter Regulation. Plenum Press, NY, pp. 89–113 (1973).

    Chapter  Google Scholar 

  67. L. Annunziato. Regulation of the tuberoinfundibular and nigrostriatal systems. Neuroendocrinology 29: 66 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simpkins, J.W., Bodor, N. (1992). Brain Targeted Delivery of Neurotransmitters: Use of a Redox Based Chemical Delivery System. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics