Skip to main content

Delayed Neuronal Death of Hippocampus (CA1) After Transient Global Ischemia: Does Nerve Growth Factor Protect Neurons Against “Killer Proteins” ?

  • Chapter
Book cover Treatment of Dementias

Abstract

Specific regions of brain are known to be especially vulnerable to various insults such as ischemia [Spielmeyer, 1925; Brown and Brierley, 1968]. Patients resuscitated from cardiac arrest often suffer from memory impairment. Even a short cessation of cerebral circulation causes damage to the hippocampus, which is critical to memory function [Brierly and Graham, 1984; Petito, 1984]. Delayed neuronal death of the hippocampus was originally described in rodents model of transient global ischemia [Ito et al. 1975; Kirino, 1982; Pulsinelli et al. 1982]. In gerbils, only 5 minutes of bilateral carotid artery occlusion causes selective neuronal death of the hippocampal CAl sector [Kirino, 1982].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloe L (1988) Intracerebral pretreatment with nerve growth factor prevents irreversible brain lesions in neonatal rats injected with ibotenic acid. Biotechnology 5: 1085–1086.

    Google Scholar 

  • Barnes DM (1988a) Cells without growth factors committed suicide. Science 242: 1510–1511.

    Article  PubMed  CAS  Google Scholar 

  • Barnes DM (1988b) NMDA receptors trigger excitement. Science 239: 254–256.

    Article  PubMed  CAS  Google Scholar 

  • Brierley JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. London: Edward Arnold, (pp. 125–207 ).

    Google Scholar 

  • Brown A, Brierley J (1968) The nature, distribution, and earliest stages of anoxicischemic nerve cell damage in the rat brain as defined by the optical microscope. Br J Exp Pathol 49: 87–106.

    PubMed  CAS  Google Scholar 

  • Buck CR, Martinez HJ, Chao MD, Black IB (1988) Differential expression of the nerve growth factor receptor in multiple brain areas. Dev Brain Res 44: 259–268.

    Article  CAS  Google Scholar 

  • Bust R, Dietrich WD, Globus MYT, Ginsberg MD (1989) Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 101: 299–304.

    Article  Google Scholar 

  • Bust R, Dietrich WD, Globus MYT, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 44: 259–268.

    Google Scholar 

  • Choi DW, Rothmann SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6:505– 510.

    Google Scholar 

  • Dienel GA, Plusinelli WA, Duffy TE (1980) Regional protein synthesis in the rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226.

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Kano I, Furukawa Y, Akazawa S, Satoyoshi E, Itoh K, Hayashi K (1983) A highly sensitive enzyme immunoassay for mouse ß nerve growth factor. J Neurochem 40: 734–744.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Furukawa Y, Satoyoshi E, Hayashi K (1986a) Synthesis and secretion of nerve growth factor by mouse astroglial dells in culture. Biochem Biophys Res Commun 136: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Furukawa Y (1990) Nerve growth factor synthesis and its regulatory mechanisma: an approach to therapeutic induction of nerve growth factor synthesis. Cerebrovas and Brain Metab Rev 2: 328–344.

    CAS  Google Scholar 

  • Furukawa Y, Furukawa S, Satoyoshi E, Hayashi K (1986b) Catecholamines induce an increase in nerve growth factor content in the medium of mouse L-M cells. J Biol Chem 261: 6039–6047.

    PubMed  CAS  Google Scholar 

  • Furukawa Y, Fukazawa N, Miyama Y, Hayashi K, Furukawa S (1990) Stimulatory effect of 4-alkylcatechols and their diacetylated derivatives on the synthesis of nerve growth factor. Biochem Pharmacol 40: 2337–2342.

    Article  PubMed  CAS  Google Scholar 

  • Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349.

    PubMed  CAS  Google Scholar 

  • Hefti F, Dravid A, Hartikka J (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal acetylcholine transferase activity in adult rats with partial septohippocampal lesions. Brain Res 1984: 305–311.

    Article  Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20: 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa R, Nishikiori K, Furukawa S (1991) Appearance of nerve growth factor and acidic fibroblast growth factor with different time courses in the cavity-lesioned cortex of the brain. Neurosci Lett 56: 836–841.

    CAS  Google Scholar 

  • Ito U, Spatz M, Walker JT Jr, Klatzo l (1981) Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopis observations. Acta Neuropathol (Berl) 32:209– 223.

    Google Scholar 

  • Jørgensen MB, Decker J, Wright DC, Gehlert DR (1989) Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global cerebral ischemia: an in situ hybridization study. Brain Res 484: 393–398.

    Article  PubMed  Google Scholar 

  • Kervin J, Morris C, Oakley A, Perry R, Perry E (1991) Distribution of nerve growth factor receptor immunoreactivity in the human hippocampus. Neurosci Lett 121:178– 182.

    Google Scholar 

  • Kiessling M, Xie Y, Ullrich B, Thilmann R (1991) Are the neuroprotective effect of the protein synthesis inhibitor cycloheximide due to prevention of apoptosis? J Cereb Blood Flow Metab 11 Suppl: S357.

    Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Korshing S, Auburger G, Heuman R, Scott J, Thoenen H (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO 4: 1389–1393.

    Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, ReichardtLF (1986) Nerve growth factor gene expression in the developing rat brain. Science 234: 352–355.

    CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Lorez H, Keller F, Ruess G, Otten U (1989) Nerve growth factor increase in adult rat brain after hypoxic injury. Neurosci Lett 98: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Buck CR, Dreyfus CF, Black IB (1989) Expression of NGF and NGF receptor mRNAs in the developing brain: evidence for local delivery and action of NGF. Exp Neurol 104: 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson K, Wieloch T (1989) Impairment of ubiquitization may cause delayed neuronal death. Neurosci Lett 96: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM Jr (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 106: 829–844.

    Google Scholar 

  • Marx JL (1986) Nerve growth factor acts in brain. Science 232: 1341–1342.

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Furukawa S, Shibasaki H, Kikuchi T (1990) Reduction of nerve growth factor level in the brain of genetically ataxic mice (weaver, reeler). FEBS Lett 276:78– 80.

    Google Scholar 

  • Montero CN, Hefti F (1989) Intraventricular nerve growth factor administration prevents lesion-induced loss of septal cholinergic neurons in aging rats. Neurobiol Aging 10: 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271: 676–677.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S (1982) Brain injury causes a time-dependent increase in neurotrophic activity at the lesion site. Science 217: 860–861.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M, Lim R, Hicklin DJ, Cotman CW (1988) Early release of glia maturation factor and acidic fibroblast growth factor after rat brain injury. Neurosci Lett 86: 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45: 1635–1641.

    Article  PubMed  CAS  Google Scholar 

  • Nowak TS Jr, Bond U, Schlesinger MJ (1990) Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J Neurochem 54: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Harverkamp LJ, Prevette D, McManaman JL, Appel SH (1988) Reduction of naturally occurring motoneuron death in vivo by a target-derived neurotrophic factor. Science 240: 919–922.

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37: 1281–1286.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Kreutzberg GW (1987) The localization and distribution of high affinity ß-nerve growth factor binding sites in the central nervous system of the adult rat. A light microscopic autoradiographic study using [125I] β-nerve growth factor. Neuroscience 20: 23–36.

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, Verge Issa VMK, Riopelle RJ (1986) Distribution of neuronal receptors for nerve growth factor in the rat. J Neurosci 6: 2312–2321.

    PubMed  CAS  Google Scholar 

  • Rosenberg MB, Friedmann T, Robertson RC, Tuszynski M, Wolff JA, Breakefield XO, Gage FH (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242: 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto Y, Furukawa S (1991) Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 11: 2914–2919.

    PubMed  CAS  Google Scholar 

  • Shigeno T, Yamasaki Y, Kato G, Kusaka K, Mima T, Takakura K, Graham DI, Furukawa S (1990) Reduction of delayed neuronal death by inhibition of protein synthesis. Neurosci Lett 120: 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Siejö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–185.

    Article  Google Scholar 

  • Spielmeyer W (1925) Zur Pathogenese der örtlich elecktiven Gehimveränderungen. Z Neurol Psychiatr 99: 756–777.

    Article  Google Scholar 

  • Thilman R, Xie Y, Kleinhaus P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71: 88–93.

    Article  Google Scholar 

  • Vass K, Welch WJ, Nowak TS Jr (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropthol (Berl) 77: 128–135.

    CAS  Google Scholar 

  • Yoshimine T, Hayakawa T, Yamamoto S, Kimura E, Iris T, Fujioka K (1990) Effect of nerve growth factor on the development of postischemic neuronal death. Paper presented at the 9th International Congress of Neuropathology ( Kyoto, Japan )

    Google Scholar 

  • Yost HJ, Lindquist S (1988) Translation of unspliced transcripts after heat shock. Science 1988: 1544–1548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mima, T. et al. (1992). Delayed Neuronal Death of Hippocampus (CA1) After Transient Global Ischemia: Does Nerve Growth Factor Protect Neurons Against “Killer Proteins” ?. In: Meyer, E.M., Simpkins, J.W., Yamamoto, J., Crews, F.T. (eds) Treatment of Dementias. Advances in Behavioral Biology, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3432-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3432-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6518-1

  • Online ISBN: 978-1-4615-3432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics