Skip to main content

General Phenylpropanoid Metabolism: Regulation By Environmental and Developmental Signals

  • Chapter
Phenolic Metabolism in Plants

Abstract

A tremendous array of plant natural products is synthesized from Lphenylalanine via a series of biosynthetic pathways involving phenylpropanoid metabolism. Phenylpropanoid metabolism can be divided into a central, general pathway (“general phenylpropanoid metabolism”), required for the synthesis of all phenylpropanoid metabolites, and specific branch pathways emanating from the general pathway which may require in addition other pathways. These lead to the synthesis of specific phenolic end products (Fig. 1). Phenylalanine ammonia-lyase (PAL) catalyzes the first step of general phenylpropanoid metabolism, the deamination of L-phenylalanine to produce cinnamic acid. Cinnamic acid is hydroxylated by cinnamate 4-hydroxylase (C4H) to yield 4coumaric acid. The activities of hydroxylases and 0-methyl transferases upon 4coumaric acid can yield derivatives of 4-coumaric acid (e.g. ferulic acid, 3’ methoxylated, and sinapic acid, 3’,5’ methoxylated). The enzyme 4-coumarate: CoA ligase (4CL) catalyzes the third and final step in the general pathway, the formation of activated CoA esters of hydroxycinnamic acids (4-coumaric acid or its methoxylated derivatives).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, N.G.,Yamamoto, E. 1990. Lignin: Occurance, biogenesis, and degradation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496.

    Article  Google Scholar 

  2. Ludwig, S.R., Wessler, S.R. 1990. Maize R-gene family: tissue-specific helix-loop-helix proteins. Cell 62: 849–851.

    Article  PubMed  CAS  Google Scholar 

  3. Almeida, J., Carpenter, R., Robbins, T.P., Martin, C., Coen, E.S. 1989. Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev. 3: 1758–1767.

    Article  PubMed  CAS  Google Scholar 

  4. Wiermann, R. 1981. Secondary plant products and cell and tissue differentiation. In: The Biochemistry of Plants, vol. 7, (P.K. Stumpf and E.E. Conn, eds.), Academic Press, New York, pp. 85–116.

    Google Scholar 

  5. Lynn, D.G., Chang, M. 1990. Phenolic signals in cohabitation: Implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 497–526.

    Article  CAS  Google Scholar 

  6. Schmelzer, E., Jahnen, W., Hahlbrock, K. 1988. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl. Acad. Sci. U.S.A. 85: 2989–2993.

    Article  PubMed  CAS  Google Scholar 

  7. Knogge, W., Weissenböck, G. 1986. Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L. Planta 167:196–205.

    Article  CAS  Google Scholar 

  8. De Vlaming, P., Kho, K.F.F. 1976. 4,2’,4’,6’-Tetrahydroxychalcone in pollen of Petunia hybrida. Phytochemistry 15:348–349.

    Article  Google Scholar 

  9. Hahlbrock, K., Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369.

    Article  CAS  Google Scholar 

  10. Dixon, R.A., Lamb, C.J. 1990. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339–367.

    Article  CAS  Google Scholar 

  11. Schmelzer, E., Kroeger-Lebus, S., Hahlbrock, K. 1989. Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell, 1:993–1001.

    PubMed  CAS  Google Scholar 

  12. Dixon, R.A., Harrison, M.J. 1990. Activation, structure, and organization of genes involved in microbial defense in plants. Adv. Genet. 28:165–234.

    CAS  Google Scholar 

  13. Dangl, J.L. 1991. Regulatory elements controlling developmental and stress induced expression of phenylpropanoid genes. In: Plant Gene Research, Vol. 8, (T. Boller and F. Meins, eds.), Springer Veralag, Vienna, in press.

    Google Scholar 

  14. Liang, X., Dron, M., Cramer, C., Dixon, R.A., Lamb, C.J. 1989. Differential regulation of phenylalanine ammonia-lyase genes during development and by environmental cues. J. Biol. Chem. 264:14486–14492.

    PubMed  CAS  Google Scholar 

  15. Harker, C.L., Ellis, T.H.N., Coen, E.S. 1990. Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell 2:185–194.

    PubMed  CAS  Google Scholar 

  16. Koes, R.E, Van Blokland, R., Quattrochio, F., Van Tunen, A.J., Mol, J.N.M. 1990. Chalcone synthase promoters in Petunia are active in pigmented and unpigmented cell types. Plant Cell 2:379–392.

    PubMed  CAS  Google Scholar 

  17. Ludwig, S.R., Habera, L.F., Dellaporta, S.L., Wessler, S.R. 1989. LC, a member of the maize R-gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc homology region. Proc. Natl. Acad. Sci. U.S.A. 86:7092–7096.

    Article  PubMed  CAS  Google Scholar 

  18. Harrison, M.J., Lawton, M.A., Lamb, C.J., Dixon, R.A. 1991. Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Natl. Acad. Sci. U.S.A. 88:2515–2519.

    Article  PubMed  CAS  Google Scholar 

  19. Gross, G.G., Zenk, M.H. 1974. Isolation and properties of hydroxycinnamate:CoA ligase from lignifying tissue of Forsythia. Eur. J. Biochem. 42:453–459.

    Article  PubMed  CAS  Google Scholar 

  20. Knobloch, K.-H., Hahlbrock, K. 1975. Isoenzymes of pcoumarate:CoA ligase from cell suspension cultures of Glycine max. Eur. J. Biochem. 52:311–320.

    Article  PubMed  CAS  Google Scholar 

  21. Ranjeva, R., Boudet, A.M., Faggion, R. 1976. Phenolic metabolism in Petunia tissues. IV. Properties of p-coumarate: coenzyme A ligase isoenzymes. Biochimie 58:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  22. Knobloch, K. H., Hahlbrock, K. 1977. 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Arch. Biochem. Biophys. 184:237–248.

    Article  PubMed  CAS  Google Scholar 

  23. Wallis, P.J., Rhodes, M.J.C. 1977. Multiple forms of hydroxycinnamte: CoA ligase in etiloated pea seedlings. Phytochemistry 16:1891–1894.

    Article  CAS  Google Scholar 

  24. Grand, C., Boudet, A., Boudet, A.M. 1983. Isoenzymes of hydroxycinnamate:CoA ligase from poplar stems and tissue distribution. Planta 158:225–229.

    Article  CAS  Google Scholar 

  25. Vincent, J.R., Nicholson, R.L. 1987. Evidence for isoenozymes of hydroxycinnamate:CoA ligase in maize mesocotyls and their response to infection by Heminthosporium maydis race 0. Physiol. Mol. Plant Pathol. 30:121–129.

    CAS  Google Scholar 

  26. Lozoya, E., Hoffmann, H., Douglas, C.J., Schulz, W., Scheel, W., Hahlbrock, K. 1988. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley. Eur. J. Biochem. 176:661–667.

    Article  PubMed  CAS  Google Scholar 

  27. Becker-André, M., Schulze-Lefert, P., Hahlbrock, K. 1991. Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato. J. Biol. Chem. 266:8551–8559.

    PubMed  Google Scholar 

  28. Douglas, C.J., Hoffmann, H., Schulz, W., Hahlbrock, K. 1987. Structure and elicitor or u.v.-light stimulated expression of two 4-coumarate: CoA ligase genes in parsley. EMBO J. 6:1189–1195.

    PubMed  CAS  Google Scholar 

  29. Lois, R., Dietrich, A., Hahlbrock, K., Schulz, W. 1989. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive elements. EMBO J. 8:1641–1648.

    PubMed  CAS  Google Scholar 

  30. Douglas, C.J., Hauffe, K.D., Ites-Morales, M.-E., Ellard, M., Paszkow-Ski, U., Hahlbrock, K., Dangl, J.L. 1991. Exonic sequences are required for elicitor and light activation of a plant defense gene, but promoter sequences are sufficient for tissue specific expression. EMBO J., 10:1767–1775.

    PubMed  CAS  Google Scholar 

  31. Schulze-Lefert, P., Dangl, J.L., Becker-Andre, M., Hahlbrock, K., Schulz,W. 1989. Inducible in vivo footprints define sequences necessary UV-light activation of the parsley chalcone synthase gene. EMBO J. 8:651–656.

    PubMed  CAS  Google Scholar 

  32. Van De Lücht, U., Meier, I., Hahlbrock, K., Somssich, I.E. 1990. A 125 bp promoter fragment is sufficient to for strong elicitor-mediated gene activation in parsley. EMBO J. 9:945–2950.

    Google Scholar 

  33. Elliott, R.C., Dickey, L.F., White, M.J., Thompson, W.F. 1989. cis-acting elements for light regulation of pea ferredoxin I gene expression are located within transcribed sequences. Plant Cell 1:691–698.

    PubMed  CAS  Google Scholar 

  34. Bevan, M., Shufflebottom, D., Edwards, K., Jefferson, R., Schuch,W. 1989. Tissue-and cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO J. 8:1899–1906.

    PubMed  CAS  Google Scholar 

  35. Liang, X., Dron, M., Schmid, J., Dixon, R.A., Lamb, C.J. 1989. Developmental and environmental regulation of a phenyl-alanine ammonia-lyase beta-glucuronidase gene fusion in transgenic tobacco plants. Proc. Natl. Acad Sci. U.S.A. 86:9284–9288.

    Article  PubMed  CAS  Google Scholar 

  36. Schmid, J., Doerner, P.W., Clouse, S.D., Dixon, R.A., Lamb, C.J. 1990. Developmental and environmental regulation of a bean chalcone synthase promoter. Plant Cell 2:619–631.

    PubMed  CAS  Google Scholar 

  37. Ohl, S., Hedrick, S.A., Chory, J., Lamb, C.J. 1990. Functional properties of the phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837–848.

    PubMed  CAS  Google Scholar 

  38. Hauffe, K.D., Paszkowski, U., Schulze-Lefert, P., Hahlbrock, K., Dangl, J.L., Douglas, C.J. 1991. A parsley 4CL1 promoter fragment specifies complex expression patterns in transgenic tobacco. Plant Cell 3:435–443.

    PubMed  CAS  Google Scholar 

  39. Heilman, P.E., Stettler, R.F. 1985. Genetic variation and productivity of Populus trichocarpa and its hybrids. II. biomass production in a 4-year plantation. Can. J. For. Res. 15:384–388.

    Article  Google Scholar 

  40. Wollenweber, E. 1973. Flavonoidmuster als systematisches Merkmal in der Gattung Populus. Biochem. Systematics Ecol. 3:35–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Douglas, C.J. et al. (1992). General Phenylpropanoid Metabolism: Regulation By Environmental and Developmental Signals. In: Stafford, H.A., Ibrahim, R.K. (eds) Phenolic Metabolism in Plants. Recent Advances in Phytochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3430-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3430-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6517-4

  • Online ISBN: 978-1-4615-3430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics