Skip to main content

Compartmentation in Aromatic Metabolism

  • Chapter
Phenolic Metabolism in Plants

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 26))

Abstract

Plant aromatic metabolism is a unique and fascinating biochemical process that has no counterpart in avian or mammalian systems. The process is long and complex, and it interfaces three metabolic processes in cell organization: the metabolism of carbohydrates, proteins and lipids. This process also represents the most complicated flow of carbon in plants that we know of today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dixon, R.A., Bolwell, G.P., Hamdan, M.A.M.S., Robbins, M.P. 1987. Molecular biology of induced resistance. In: Genetics and Plant Pathogenesis. (P.R. Day and G.J. Jellis, eds.) Blackwell Scientific, Oxford, pp. 245–259.

    Google Scholar 

  2. Dyer, W.E., Henstrand, J.M., Handa, A.K., Herrmann, K.M. 1989. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc. Natl. Acad. Sci. USA 86:7370–7373.

    Article  CAS  PubMed  Google Scholar 

  3. Hoch, H.C., Pratt, C., Marx, G.A. 1980. Subepidermal air spaces: basis for the phenotypic expression of the Argenteum mutant of Pisum. Amer. J. Bot. 67:905–911.

    Article  Google Scholar 

  4. Marx, G.A. 1978. Argenteum: a mutant under nuclear and extra nuclear control. Pisum Newsl. 10:34–37.

    Google Scholar 

  5. Hrazdina, G., Marx, G.A., Hoch, H.C. 1982. Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves. Plant Physiol. 70:745–748.

    Article  CAS  PubMed  Google Scholar 

  6. Jahnen, W., Hahlbrock, K. 1988. Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum). Planta 173:197–204.

    Article  CAS  Google Scholar 

  7. Schmelzer, E., Jahnen, W., Hahlbrock, K. 1988. In situ localization of light-induced chalcone synthase MRNA, chalcone synthase and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl. Acad. Sci. USA 85:2989–2993.

    Article  CAS  PubMed  Google Scholar 

  8. Knogge, W., Weissenböck, G. 1986. Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L. Planta 167:196–205.

    Article  CAS  Google Scholar 

  9. Dennis, D.T., Miernyk, J.A. 1982. Compartmentation ofnonphoto-synthetic carbohydrate metabolism. Annu. Rev. Plant Physiol. 33:27–50.

    Article  CAS  Google Scholar 

  10. Jensen, R.A. 1986. Tyrosine and phenylalanine biosynthesis: relationship between alternative pathways, regulation and subcellular location. Rec. Adv. Phytochem. 20:57–82.

    CAS  Google Scholar 

  11. Carlson, T.E., Widholm, J.M. 1978. Separation of two forms of anthranilate synthase from 5-methyltryptophan susceptible and resistant cultured Solanum tuberosum cells. Physiol. Plant. 44:251–255.

    Article  CAS  Google Scholar 

  12. Mousdale, D.M., Campbell, M.S., Coggins, J.R. 1987. Purification and characterization of bifunctional dehydroquinaseshikimate:NADP oxidoreductase from pea seedlings. Phytochemistry 26:2665–2670.

    Article  CAS  Google Scholar 

  13. Mousdale, D.M., Coggins, J.R. 1985. Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L. Planta 163:241–249.

    Article  CAS  Google Scholar 

  14. D’amato, T.A., Ganson, R.J., Gaines, R.A., Jensen, R.A. 1984. Subcellular localization of chorismate mutase isoenzymes in protoplasts from mesophyll and suspension cultured cells of Nicotiana silvestris. Planta 162:104–108.

    Article  Google Scholar 

  15. Smart, C.C, Amrhein, N. 1987. Ultrastructural localization by protein A-gold immunocytochemistry of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which overproduces the enzyme. Planta 170:1–6.

    Article  CAS  Google Scholar 

  16. Saunders, J.A., Mcclure, J.W. 1976. The distribution of flavonoids in chloroplasts of twenty five species of vascular plants. Phytochemistry 15:809–816.

    Article  CAS  Google Scholar 

  17. Weissenböeck, G., Fleing, I., Ruppel, H.G. 1972. Untersuchungen zur Lokalisation von Flavonoiden in Plastiden. I. Flavonoide in Etioplasten von Avena sativa L. Z. Naturforschg. 27:1216–1224.

    Google Scholar 

  18. Hrazdina, G., Alscher-Herman, R., Kish, V.M. 1980. Subcellular localization of flavonoid synthesizing enzymes in Pisum, Phaseolus, Brassica and Spinacia cultivars. Phytochemistry 19:1355.

    CAS  Google Scholar 

  19. Saunders, J.A., Conn, E.E., Lin, C.H., Shimada, M. 1977. Localization of cinnamic acid 4-monooxygenase and the membrane-bound enzyme system for dhurrin biosynthesis in Sorghum seedlings. Plant Physiol. 60:629–634.

    Article  CAS  PubMed  Google Scholar 

  20. Hagmann, M-L., Heller, W., Grisebach, H. 1983. Induction and characterization of a microsomal flavonoid 3’-hydroxylase from parsley cell cultures. Eur. J. Biochem. 134:547–554.

    Article  CAS  PubMed  Google Scholar 

  21. Ureta, T. 1978. The Role of Isozymes in Metabolism: A Model of Metabolic Pathways as the Basis for The Biological Role of Isozymes. Current Topics in Cellular Regulation 13:233–258.

    CAS  PubMed  Google Scholar 

  22. Gorringe, D.M., Moses, V. 1978. A multienzyme aggregate with glycolytic activity from Escherichia coli. Biochem. Soc. Transactions 6:167–169.

    CAS  Google Scholar 

  23. Ahmed, S.I., Giles, N.H. 1969. Organization of enzymes in the common aromatic synthetic pathway: Evidence for aggregation in fungi. J. Bact. 99:231–237.

    CAS  PubMed  Google Scholar 

  24. Berlyn, M.B., Giles, N.H. 1969. Organization of enzymes in the polyaromatic synthetic pathway: Separability in bacteria. J. Bact. 99:222–230.

    CAS  PubMed  Google Scholar 

  25. Duncan, K., Edwards, R.M., Coggins, J.R. 1987. The pentafunctional arom enzyme of Saccharomyces cerevisisiae is a. mosaic of monofunctional domains. Biochem. J. 246:375–386.

    CAS  PubMed  Google Scholar 

  26. Koshiba, T. 1978. Purification of two forms of the associated 3dehydroquinate hydro-lyase and shikimate:NADP+ oxidoreductase in Phaseolus mungo seedlings. Biochem. Biophys. Acta 522:10–18.

    CAS  Google Scholar 

  27. Polley, L.D. 1978. Purification and characterization of 3dehydroquinate hydrolase and shikimate oxidoreductase. Evidence for a bifunctional enzyme. Biochim. Biophys. Acta 526:259–266.

    CAS  Google Scholar 

  28. Gaertner, F.H., Demoss, J.A. 1969. Purification and characterization of a multienzyme complex in the tryptophan pathway of Neurospora crassa. J. Biol. Chem. 244:2716–2725.

    CAS  PubMed  Google Scholar 

  29. Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W., Davies, D.R. 1988. Three-dimensional structure of the tryptophan synthase a2ß2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263:17857–17871.

    CAS  PubMed  Google Scholar 

  30. Dunn, M.F., Aguilar, V., Brzovic, P., Drewe, JR., W.F., Houben, K.F., Leja, C.A., Roy, M. 1990. The tryptophan synthase bienzyme complex transfers indole between the a-and (3- sites via a 25–30 Å long tunnel. Biochemistry 29:8598–8607.

    CAS  Google Scholar 

  31. Amrhein, N., Zenk, M. H. 1971. Untersuchungen zur Rolle der Phenylalanine Ammonia Lyase (PAL) bei der Regulation der Flavonoidsynthese in Buchweizen (Fagopyrum Esculentum Moench). Z. Pflanzenphysiol. 64:145–168.

    CAS  Google Scholar 

  32. Czichi, U., Kindl, H. 1975. Formation of p-coumaric acid and ocoumaric acid from L-phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 125:115–125.

    CAS  Google Scholar 

  33. Czichi, U., Kindl, H. 1977. Phenylalanine ammonia lyase and cinnamic acid hydroxylase as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta 134:133–143.

    Article  CAS  Google Scholar 

  34. Hrazdina, G., Wagner, G.J. 1985. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane-associated enzyme complexes. Arch. Biochem. Biophys. 237:88–100.

    CAS  Google Scholar 

  35. Czichi, U., Kindl, H. 1975. A model of closely assembled consecutive enzymes on membranes: Formation of hydroxycinnamic acids from L-phenylalanine of thylakoids of Dunaliella marina. Hoppe-Seyler’s Z. Physiol. Chem. 475–485.

    Google Scholar 

  36. Stafford, H.A., 1981. Compartmentation in natural product biosynthesis by multienzyme complexes. In: The Biochemistry of Plants, Vol. 7, (E.E.Conn, ed), Academic Press, New York, pp.117–137.

    Google Scholar 

  37. Hrazdina, G., Wagner, G.J., Siegelman, H.W. 1978. Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts. Phytochemistry 17:53–56.

    Article  CAS  Google Scholar 

  38. Wagner, G.J. Hrazdina, G. 1984. Endoplasmic reticulum as a site of phenylpropanoid and flavonoid metabolism in Hippeastrum. Plant. Physiol. 74:901–906.

    CAS  Google Scholar 

  39. Lord, J.M., Kagawa, T., Moore, T.S., Beevers, H. 1973. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J. Cell Biol. 57:659–667.

    Article  CAS  PubMed  Google Scholar 

  40. Hrazdina, G., Wagner, G.J. 1985. Compartmentation of plant phenolic compounds; sites of synthesis and accumulation. In: Annual Proceedings of the Phytochemical Society of Europe. Vol. 25. (C.F. Van Sumere, P.J. Lea, eds.) Clarendon Press, Oxford, pp. 120–133.

    Google Scholar 

  41. Parham, R.A., Kaustinen, H.M. 1977. On the site of tannin synthesis in plant cells. Bot. Gaz. 138:465–467.

    Article  Google Scholar 

  42. Hrazdina, G., Zobel, A.M., Hoch, H.C. 1987. Biochemical, immunological and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 84:8966–8970.

    Article  CAS  PubMed  Google Scholar 

  43. Beerhues, L., Wiermann, R. 1988. Chalcone synthases from spinach (Spinacia oleracea L.). Planta 173:532–543.

    Article  CAS  Google Scholar 

  44. Sun, Y., Wu, Q., Van Etten, H.D., Hrazdina, G. 1991. Stereo-isomerism in plant disease resistance: Induction and isolation of the 7,2’-dihydroxy-4’,5’-methylenedioxyisoflavone oxidoreductase, an enzyme introducing chirality during synthesis of isoflavonoid phytoalexins in pea (Pisum sativum L). Arch. Biochem. Biophys. 284:167–173.

    CAS  Google Scholar 

  45. Lipman, T. 1926. Die Anthocyanophore der Erythrea-Arten. Beitr. Bot. Zentralbi. Abt. I 43:127–132.

    Google Scholar 

  46. Mollisch, H. 1923. Mikrochemie der Pflanzen. Fischer Verlag, Jena.

    Google Scholar 

  47. Matile, P. 1978. Biochemistry and function of vacuoles. Annu. Rev. Plant Physiol. 29:193–213.

    Article  CAS  Google Scholar 

  48. Wagner, G.J. Siegelman, H.W. 1975. Large scale isolation of intact vacuoles and isolation of chloroplasts of mature plant tissues. Science 190:1298–1304.

    Google Scholar 

  49. Sasse, F., Becks-Husemann, D., Barz, W. 1979. Isolation and characterization of vacuoles from cell suspension cultures of Daucus carota. Z. Naturforsch. 34c:848–853.

    CAS  Google Scholar 

  50. Moskowitz, A.H., Hrazdina, G. 1981. Contents of vacuoles isolated from grape berry subepidermal tissues. Plant Phys.. 65:97–105.

    Google Scholar 

  51. Matern, U., Heller, W., Himmelspach, K. 1983. Conformational changes of apigenin 7–0-(6–0-malonylglucoside), a vacuolar pigment from parsley, with solvent composition and proton concentration. Eur. J. Biochem. 133:439–448.

    Article  CAS  PubMed  Google Scholar 

  52. Saunders, J.A., Conn, E.E. 1978. Presence of the cyanogenic glucoside dhurrin in isolated vacuoles from sorghum. Plant Physiol. 61:154–157

    Article  CAS  PubMed  Google Scholar 

  53. Oba, K., Conn, E.E., Canut, H., Boudet, A.M. 1981. Subcellular localization of 2-(13-D-glucosyl-oxy)cinnamic acids and the related ßglucosidase in leaves of Melilotus alba Dear. Plant Physiol. 68:1359–1363.

    Article  CAS  PubMed  Google Scholar 

  54. Grob, K., Matile, P. 1979. Vacuolar location of glucosinolates in horseradish root cells. Plant Sci. Lett. 14:327–335.

    CAS  Google Scholar 

  55. Leigh, R.A., Branton, D. 1976. Isolation of vacuoles from root storage tissue of Beta vulgaris. Plant. Physiol. 58:656–662.

    CAS  Google Scholar 

  56. Davis, R.H. 1967. Channeling in Neurospora metabolism. In: Organizational Biosynthesis. (H.J. Vogel, J.O. Lampen, and V. Bryson, eds.) Academic Press, New York, pp. 303–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hrazdina, G. (1992). Compartmentation in Aromatic Metabolism. In: Stafford, H.A., Ibrahim, R.K. (eds) Phenolic Metabolism in Plants. Recent Advances in Phytochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3430-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3430-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6517-4

  • Online ISBN: 978-1-4615-3430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics