Skip to main content

Oxygenation of the Cortex of the Brain of Cats during Occlusion of the Middle Cerebral Artery and Reperfusion

  • Chapter
Oxygen Transport to Tissue XIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 317))

Abstract

Cerebral function is lost within seconds of deprivation of oxygen and within 2–3 minutes anoxic depolarization begins (see Silver, 1977, 1978). This depolarization is characterized by massive loss of K+ and uptake of CI- into cells (Van Harrevald, 1971). If depolarizing conditions continue, there is progressive accumulation of intracellular Ca2+ and degradation of essential cellular components. The extent to which the loss of cellular and brain function can be reversed depends on the time and degree of oxygen deprivation as well as the conditions during and after reoxygenation. Attempts to define the biochemical and physiological parameters responsible for the irreversible damage have met with limited success (for review see Welsh et al, 1982; Raichle, 1983). Analytical limits in the quantitation of oxygen have been particularly vexing. Oxygen deprivation is a relative term and it is important to know the extent to which the residual flow and collateral circulation are providing oxygen to the tissue. Some measurements have been made by inserting small oxygen electrodes into the tissue (Silver, 1977; 1978; Nair et al, 1987; Fennema et al, 1989) or by multielectrode surface electrodes (Leniger-Follert, 1977; Grote et al, 1984). The former are limited to measuring at single points in the tissue and cause significant mechanical disruption of the tissue during insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ames, A. III, Wright, R.L., Kowada, M., Thurston, J.M., Majno, G. (1968) Cerebral ischemia. II. The no reflow phenomenon. Amer. J. Path. 52: 437–453.

    PubMed  Google Scholar 

  • Dora, E. (1984) A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia. J. Neurochem. 42: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Dora, E., Tanaka, K., Greenberg, J.H., Gonatas, N.H. and Reivich, M. (1986) Kinetics of microcirculatory, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation. Ann. Neurol. 19: 536–544.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M. and Wilson, D.F. (1982) Regulation of cellular energy metabolism. J. Memb. Biol. 70: 1–14.

    Article  CAS  Google Scholar 

  • Fennema, M., Wessel, J.N, Faithful, N.S., and Erdmann, W. (1989) Tissue oxygen tension in the cerebral cortex of the rabbit. Adv. Exptl. Med. Biol. 248: 451–460.

    Article  CAS  Google Scholar 

  • Ginsberg, M.D., Welsh, F.A., and Budd, W.W. (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. I. Local cerebral blood flow and glucose utilization. Stroke II: 347–354.

    Article  Google Scholar 

  • Grote, J., Zimmer, K., and Schubert, R. (1984) Tissue oxygenation in normal and edemitous brain cortex during arterial hypocapnia. Adv. Exptl. Med. Biol. 180: 179–184.

    CAS  Google Scholar 

  • Harbig, K., Chance, B., Kovach, A.G.B., and Reivich, M. (1976) In Vivo measurements of pyridine nucleotide fluorescence from cat brain cortex. J. Appl. Physiol. 41: 480–488.

    PubMed  CAS  Google Scholar 

  • Leniger-Follert, E. (1977) Direct determination of local oxygen consumption of the brain cortex in vivo. Pflugers arch. 372: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Levy, D.E., Brierley, J.B., and Plum, F. (1975A) Ischemic brain damage in the gerbil in the absence of “no reflow”. J. Neurol. Neurosurg. Psychiatry 38: 1197–1205.

    Google Scholar 

  • Levy, D.E., Brierley, J.B., Silverman, D.G., and Plum, F. (1975B) Brief hyopoxia-ischemia initially damages cerebral neurons. Arch. Neurol. 32: 450–456.

    Google Scholar 

  • Levy, D.E., Van Uitert, R.L., and Pike, C.L. (1979) Delayed postischemic hypoperfusion: A potentially damaging consequence of stroke. Neurology (Minneap.) 29: 1245–1252.

    Article  CAS  Google Scholar 

  • Nair, P.K., Buerk, D.G., and Halsey, J.H. (1987) Comparisons of oxygen metabolism and tissue PO2 in cortex and hippocampus of gerbil brain. Stroke 18: 616–622.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M.E. (1983) The pathophysiology of brain ischemia. Ann. Neurol. 13: 2–10.

    Article  PubMed  CAS  Google Scholar 

  • Robiolio, M., Rumsey, W.L., and Wilson, D.F. (1989) Oxygen diffusion and mitochondrial respiration in neuroblastoma cells. Amer. J. Physiol. 256: C1207 - C1213.

    PubMed  CAS  Google Scholar 

  • Rumsey, W.L., Vanderkooi, J.M., and Wilson, D.F. (1989) Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science, Wash. DC 241: 1649–1651.

    Article  Google Scholar 

  • Rumsey, W.L., Van der kooi, J.M., and Wilson, D.F. (1989) Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science, Wash. DC 241: 1649–1651.

    Article  Google Scholar 

  • Silver, I.A. (1977) Changes in PO2 and ion fluxes in cerebral hypoxia-ischemia. Adv. Exptl. Med. Biol. 78: 299–312.

    Article  Google Scholar 

  • Silver, I.A. (1978) Cellular microenvironment in relation to local blood flow in cerebral vascular smooth muscle and its control. Elsevier, New York, p. 49–61. ( Ciba Found. Symp. 56 ).

    Google Scholar 

  • Vanderkooi, J.M., Maniara, G, Green, T.J., and Wilson, D.F. (1987) An optical method for measurement of dioxygen concentration based on quenching of phosphorescence. J. Biol. Chem. 262: 5476–5482.

    PubMed  CAS  Google Scholar 

  • Van Harrevald, A. (1971) “The extracellular space in the central nervous system” in: Structure and Function of Nervous Tissue. ( Bourne, G.E. ed.) Academic Press, London, pp. 447–511.

    Google Scholar 

  • Welsh, F.A., O’Connor, M.J., Marcy, V.R., Spatacco, A.J., and Johns, R.L. (1982) Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke 13: 234–242.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.F., Erecinska, M., Drown, C., and Silver, I.A. (1979) The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.F. and Erecinska, M. (1982) Effect of oxygen concentration on cellular metabolism. Chest 88S: 229S - 232S.

    Google Scholar 

  • Wilson, D.F., Pastuszko, A., DiGiacomo, J.E., Pawlowski, M., Schneiderman, R., Delivoria-Papadopoulos, M. (1991) Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. Appl. Physiol. 70 (6): 2691–2696.

    PubMed  CAS  Google Scholar 

  • Wilson, D.F., Rumsey, W.L., Green, T.J., and Vanderkooi, Ü.M. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263: 2712–2718.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, D.F., Gomi, S., Pastuszko, A., Greenberg, J.H. (1992). Oxygenation of the Cortex of the Brain of Cats during Occlusion of the Middle Cerebral Artery and Reperfusion. In: Erdmann, W., Bruley, D.F. (eds) Oxygen Transport to Tissue XIV. Advances in Experimental Medicine and Biology, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3428-0_82

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6516-7

  • Online ISBN: 978-1-4615-3428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics