Skip to main content

Computer Simulation of Erythrocyte Transit in the Cerebrocortical Capillary Network

  • Chapter
Oxygen Transport to Tissue XIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 317))

Abstract

The fundamental question as to how erythrocyte transit time and flow path length ensure adequate oxygen extraction from blood during compromised blood supply or increased cerebral metabolic rate is still unanswered. A longer mean transit time would allow more complete deoxygenation of the arterial blood, however, it would attenuate the diffusion gradient of oxygen tension in the tissue. The importance of optimal erythrocyte flow path length for oxygen transport may be reflected in the characteristic tortuous pattern of cerebral capillaries (Wiederhold et al, 1976), which is different in various cytoarchitectural layers of the cerebral cortex (Duvernoy et al, 1981). Tortuosity may play a role in the prolongation of transit time to compensate for the high velocity of erythrocytes in cerebrocortical capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Duvernoy, H. M., Delon, S., and Vannson, J. L., 1981, Cortical blood vessels of the human brain, Brain Res. Bull., 7: 519.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, M., Wilson, D. A., Hanley, D. F., and Traystman, R. J., 1989, Near infrared determined cerebral transit time and oxy- and deoxyhemoglobin relationships during hemorrhagic hypotension in the dog, Adv. Exp. Med. Biol., 248: 55.

    Article  PubMed  CAS  Google Scholar 

  • Groebe, K., 1988, Coupling of hemodynamics to diffusional oxygen mass transport, Adv. Exp. Med. Biol., 222: 3.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, T., Ravens, J. R., and Toole, J. F., 1967, Precapillary arteriovenosus anastomoses. “Thoroughfare channel” in the brain. Arch. Neurol., 16: 217.

    Article  PubMed  CAS  Google Scholar 

  • Hudetz, A. G., and Kiani, M. F., 1989, Hemodynamic optimization of computer generated capillary networks, Int. J. Microcirc., 8 (Suppl. 1): S16.

    Google Scholar 

  • Hudetz, A. G., and Kiani, M. F., 1990, Dependence of cerebral capillary hematocrit on red cell flow separation at bifurcations: A computer simulation study. Adv. Exp. Med. Biol., 277: 31.

    Article  PubMed  CAS  Google Scholar 

  • Hudetz, A. G., and Kiani, M. F., 1990, Dependence of cerebral capillary hematocrit on red cell flow separation at bifurcations: A computer simulation study. Adv. Exp. Med. Biol., 277: 31.

    Article  PubMed  CAS  Google Scholar 

  • Hudetz, A.G., Spaulding, J.G. and Kiani, M.F., 1989, Computer simulation of cerebral microhemodynamics. Adv. Exp. Med. Biol., 248: 293.

    Article  PubMed  CAS  Google Scholar 

  • Hudetz, A. G., and Werin, S., 1986, Percolation and transit in microvascular networks, Adv. Exp. Med. Biol., 200: 79.

    Article  PubMed  CAS  Google Scholar 

  • Kiani, M. F., Cokelet, G. R., and Sarelius, I. H., 1991, Effect of diameter variability along the capillary segment on apparent pressure drop. Proc. Fifth World Congr. Microcirculat., Louisiville, KY, p. 50.

    Google Scholar 

  • Kiani, M. F., and Hudetz, A. G., 1991, Mathematical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit. Biorheology. 28: 65.

    PubMed  CAS  Google Scholar 

  • Klitzman, B., and Johnson, P. C., 1982, Capillary network geometry and red cell distribution in hamster cremaster muscle. Am. J. Physiol., 242: H211.

    PubMed  CAS  Google Scholar 

  • Kobari, M., Gotoh, F., Fukuuchi, Y., Tanaka, K., Suzuki, N., and Uematsu, D., 1984, Blood flow velocity in the pial arteries of cats, with particular reference to the vessel diameter. J. Cereb. Blood Flow Metabol., 4: 110.

    Article  CAS  Google Scholar 

  • Little, J. R., Cook, A., Cook, S. A., and MacIntyre, W. J., 1981, Microcirculatory obstruction in focal cerebral ischemia: albumin and erythrocyte transit, Stroke: 12: 218.

    Article  PubMed  CAS  Google Scholar 

  • Lübbers, D. W., and Leniger-Follert, E., 1978, Capillary flow in the brain cortex during changes in oxygen supply and state of activation, In: “Ciba. Fnd. Symp.” 56: 21.

    Google Scholar 

  • Mayrovitz, H. N., and Roy, J., 1983, Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter, Am. J. Physiol., 245: H1031.

    PubMed  CAS  Google Scholar 

  • Murray, C. D., 1926, The physiological principle of minimum work. I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. U.S.A., 12: 207.

    Article  PubMed  CAS  Google Scholar 

  • Tomita, M., Gotoh, F., Amano, T., Tanahashi, N., Kobari, M., Shinohara, T., and Mihara, B., 1983, Transfer function through regional cerebral cortex evaluated by photoelectric method. Am. J. Physiol., 245: H385.

    PubMed  CAS  Google Scholar 

  • Wiederhold, K.-H., Bielser, W., Schultz, U., Jr., Veteau, M.-J., and Hunziker, O., 1976, Three dimensional reconstruction of brain capillaries from frozen serial sections, Microvasc. Res., 11: 175.

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa, T., Yamaguchi, S., Niimi, H., and Sugiyama, I., 1987, White blood cell plugging and blood flow maldistribution in the capillary network of cat cerebral cortex in acute hemorrhagic hypotension: An intravital microscopic study. Circulat. Shock. 22: 323.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hudetz, A.G. (1992). Computer Simulation of Erythrocyte Transit in the Cerebrocortical Capillary Network. In: Erdmann, W., Bruley, D.F. (eds) Oxygen Transport to Tissue XIV. Advances in Experimental Medicine and Biology, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_79

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3428-0_79

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6516-7

  • Online ISBN: 978-1-4615-3428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics