Skip to main content

Artificial Oxygen Carrying Blood Substitutes

  • Chapter
Oxygen Transport to Tissue XIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 317))

Abstract

Oxygen (O2) is essential for animal life on this planet. In lower single celled organisms it is obtained by simple diffusion from the surrounding aqueous mileau, but higher animals have systems designed for transporting O2 to the tissues needing it. In the case of insects a complex system of branching tubes (tracheae) has been developed that ducts air to the tissues. These tracheae end in the vicinity of mitochondria and allow efficient O2 transport in animals below a critical body mass. Higher organisms have a system in which an oxygen transporting fluid is pumped to the tissues. This fluid (blood) usually contains a metal containing pigment of high O2 affinity. In mollusks and some arthropods this pigment is the copper containing hemocyanin. In almost all higher animals this is an iron-porphyrin ring containing protein (hemoglobin) packaged in cells dedicated to its transport in blood. Interestingly enough under very cold conditions the antarctic icefish, Chaenocephalus aceratus, makes use of high solubility for O2 in the plasma and exists without the need for hemoglobin (Hb) in its blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nauyn B, Untersuchungen uber blutgerinnungen lebenden thiere und ihre folgen, Archiv Pathol Pharmakol 1 (1873): 1–17.

    Article  Google Scholar 

  2. Amberson WR, Blood Substitutes, Biol Rev 12 (1937): 48–86.

    Article  Google Scholar 

  3. Slinn DSL, and Green SW, “Fluorocarbon fluids for use in the electronics industry,” Preparation, properties and industrial applications of organofluoride compounds., Ed. Banks RE ( Chichister: Ellis Horwood, 1982 ) 45–82.

    Google Scholar 

  4. Sellards AW, and Minot GR, Injection of Hemoglobin in man and its relation to blood destruction with special reference to the anemias, J Med Res 34 (1916): 469–475.

    PubMed  CAS  Google Scholar 

  5. Amberson WR, Jennings JJ, and Rhode CM, Clinical Experience with hemoglobin-saline solutions, J Appl Physiology 1 (1949): 469–489.

    CAS  Google Scholar 

  6. Biro GP, Current status of erythrocyte substitutes, Can Med Assoc J 129 (1983): 237–244.

    PubMed  CAS  Google Scholar 

  7. Baldwin JE, and Gill B, Approaches to the preparation of oxygen carriers for use as blood substitutes, Medical Lab Sciences 39 (1982): 45–51.

    CAS  Google Scholar 

  8. Christensen SM, Medina F, Winslow RW, Snell SM, Zegna A, and Marini MA, Preparation of human hemoglobin Ao for possible use as a blood substitute, J Biochem Biophys Methods 17 (1988): 143–154.

    Article  PubMed  CAS  Google Scholar 

  9. Hsia JC, Hronowski LJ, Persaud K, and Ansari MR, ATP-hemoglobin purification by ATP-agarose affinity chromatography, J Chromatography 381 (1986): 153–157.

    Article  CAS  Google Scholar 

  10. De Venuto F, Zuck TF, Zegna AI, and Moores WY, Characteristics of stroma-free hemoglobin prepared by crystallization, J Lab Clin Med 89.3 (1977): 509–516.

    Google Scholar 

  11. Rabiner SF, Helbert JR, Lopas H, and Friedman LH, Evaluation of a stroma-free hemoglobin solution for use as a plasma expander, J Exp Med 126 (1968): 1127–1142.

    Article  Google Scholar 

  12. Wilson BG, and Odling-Smee W, Blood Substitutes: effect of haemoglobin solution on neutrophil killing, Irish J Med Sci 155 (1986): 334.

    Google Scholar 

  13. Drabkin DL, A simplified technique for large scale crystallization of human oxyhemoglobin. Isomorphous transformations of hemoglobin and myoglobin in the crystalline state, Arch Biochem 21 (1949): 224–232.

    PubMed  CAS  Google Scholar 

  14. Greenburg AG, Ginsburg K, and Peskin GW, Preservation of stroma-free hemoglobin solution, Surgical Forum 29 (1977): 5–9.

    Google Scholar 

  15. De Venuto F, Stability of crystalline hemoglobin solution during extended storage, J Lab Clin Med 92 (1978): 976.

    Google Scholar 

  16. Cochin A, Das Gupta TK, De Woskin R, and Moss GS, Immunogenic properties of stroma vs stroma-free hemoglobin solution, Surgical Forum (1972): 19–22.

    Google Scholar 

  17. Bruzzese FJ, Dix JA, Rava RP, and Cerny LC, (Abstract) Resonance raman spectra of potential blood substitutes, Biomater Artif Cells Artif Organs 15.2 (1987): 350.

    Google Scholar 

  18. Winslow RM, Blood substitutes - Minireview, The Red Cell: Seventh Ann Arbor Conference, Alan R Liss, 1989 ) 305–323.

    Google Scholar 

  19. Hertzman CM, Keipert PE, and Chang TMS, Serum antibody titers in rats receiving repeated small subcutaneous injections of hemoglobin or polyhemoglobin: a preliminary report, Int J Artif Organs 9.3 (1986): 179–182.

    Google Scholar 

  20. Kaplan HR, and Murthy VS, Hemoglobin solution: a potential oxygen transporting plasma volume expander, Fed Proceed 34 (1975): 1461–1465.

    CAS  Google Scholar 

  21. Biro GP, Beresford-Kroeger D, and Hendry P, Early deleterious hemorheologic changes following acute experimental coronary occlusion and salutary antihyperviscosity effect of hemodilution with stroma-free hemoglobin, Am Heart J 103 (1982): 870–878.

    Article  PubMed  CAS  Google Scholar 

  22. Nunn JF, Applied Respiratory Physiology, 2nd ed. ( London and Boston: Butterworths, 1977 ).

    Google Scholar 

  23. Gould SA, Sehgal LR, Rosen AL, Sehgal HL, and Moss GS, “(Chapter 6) Artificial oxygen carriers,” Modern Transfusion Therapy, Ed. Janice P Dutcher (Boca Raton: CRC Press, 1990) I: 107–123.

    Google Scholar 

  24. Gould SA, Rosen A, Sehgal L, Noud G, Sehgal H, DeWoskin R, Levine H, Kerstein M, Rice C, and Moss GS, The effect of altered hemoglobin-oxygen affinity on oxygen transport by hemoglobin solution, J Surg Res 28 (1980): 246–251.

    Article  PubMed  CAS  Google Scholar 

  25. Savitsky JP, Doczi J, Black J, and Arnold JD, A clinical safety trial of stroma-free hemoglobin, Clin Pharmacol Ther (1978): 73–80.

    Google Scholar 

  26. Bonhard K, Acute oxygen supply by infusion of hemoglobin solutions, Fed Proceed 34.6 (1975): 1466–1467.

    Google Scholar 

  27. Hamilton PB, Hiller A, and Van Slyke DD, Renal effects of hemoglobin infusions in dogs in hemorrhagic shock, J Exp Med 86 (1947): 477–487.

    Article  PubMed  CAS  Google Scholar 

  28. Brandt JL, Frank NR, and Lichtman HC, The effects of hemoglobin solutions on renal functions in man, Blood 6 (1951): 1152–1158.

    PubMed  CAS  Google Scholar 

  29. Lee R, Atsumi N, Jacobs EE, Austen WG, and Vlahakes GJ, Ultrapure, stroma-free, polymerized bovine hemoglobin solution: Evaluation of renal toxicity, J Surg Res 47 (1989): 407–411.

    Article  PubMed  CAS  Google Scholar 

  30. Relihan M, and Litwin MS, Clearance rate and renal effects of stroma-free hemoglobin on acidotic dogs, Surgery, Gynecology and Obstetrics 137 (1973): 73–79.

    PubMed  CAS  Google Scholar 

  31. Moss GS, Gould SA, Rosen AL, Sehgal L, and Sehgal HL, Animal model for nephrotoxicity of haemoglobin tetramer, The Lancet May24 (1986): 1219.

    Google Scholar 

  32. Birndorf NI, Lopas H, and Robboy SJ, Disseminated intravascular coagulation and renal failure: Production in the monkey with autologous red blood cell stroma, Laboratory Investigation 25.4 (1971): 314–319.

    Google Scholar 

  33. Bolin R, Smith D, Moore G, Boswell G, and De Venuto F, “HEmatologic effects of hemoglobin solutions in animals,” Advances in Blood Substitute Research, Ed. R. G. a. G. N. RB Bolin ( New York: Alan R Liss, 1982 ) 117–126.

    Google Scholar 

  34. Moss GS, DeWoskin R, and Cochin A, Stroma-free hemoglobin. I. Preparation and observations on in vitro changes in coagulation, Surgery 74.2 (1973): 198–203.

    Google Scholar 

  35. Wilson WA, and Thomas EJ, Activation of the alternative pathway of human complement by haemoglobin, Clin Exp Immunol 36 (1979): 140–144.

    PubMed  CAS  Google Scholar 

  36. FDC Reports, Somatogen lipid-encapsulated recombinant hemoglobin blood substitute under Navy contract, FDC Reports: “The Pink Sheet ” 52. 45 (1990): 8.

    Google Scholar 

  37. Moss GS, Gould SA, Sehgal LR, and Sehgal HL, Hemoglobin solution-From tetramer to polymer, Surgery 95.3 (1984): 249–255.

    Google Scholar 

  38. Sehgal LR, Rosen AL, Noud G, Sehgal HL, Gould SA, DeWoskin R, Rice CL, and Moss GS, Large-volume preparation of pyridoxylated hemoglobin with high P50, J Surg Res 30 (1981): 14–20.

    Article  PubMed  CAS  Google Scholar 

  39. De Venuto F, and Zegna A, Preparation and evaluation of pyridoxalated-polymerized human hemoglobin, J Surg Res 34 (1983): 205–212.

    Article  Google Scholar 

  40. Bakker JC, Bleeker WK, and van der Plas J, Properties of hemoglobin interdimerically cross-linked with NFPLP, Transfusion Med: Proceedings of the XVII Annual Scientific Symposium of the American Red Cross (1986): 49–55.

    Google Scholar 

  41. Sehgal LR, Gould SA, Rosen AL, Sehgal HL, and Moss GS, Polymerized pyridoxylated hemoglobin: A red cell substitute with normal oxygen capacity, Surgery 95.4 (1984): 433–438.

    Google Scholar 

  42. Tye RW, (US Patent) Preparation of stroma-free non-heme protein-free hemoglobin, US Patent 4, 473, 494 (1984):

    Google Scholar 

  43. Tarn S-C, Blumenstein J, and Wong T-F, Soluble dextran-hemoglobin complex as a potential blood substitute, Proc Natl Acad Sci USA 73 (1976): 2128–2131.

    Article  Google Scholar 

  44. Ajisaka K, and Iwashita Y, Modification of human hemoglobin with polyethylene glycol: A new candidate for blood substitute, Biochem and Biophysical Res Commun 97.3 (1980): 1076–1081

    Google Scholar 

  45. Feola M, Gonzalez H, and Canizaro PC, Development of a bovine stroma-free hemoglobin solution as a blood substitute, Surgery Gynecology and Obstetrics 157.5 (1983): 399–408.

    Google Scholar 

  46. Hunt CA, and Burnette RR, “Neohemocytes,” Advances in blood Substitute Research, Ed. R. g. a. G. N. RB Bolin ( New York: Alan R Liss, 1982 ) 59–70.

    Google Scholar 

  47. Smith AR, Van Alphen W, Faithfull NS, and Fennema M, Limb preservation in replantation surgery, J Plast Reconstr Surg 75.2 (1985): 227–237.

    Google Scholar 

  48. Djordjevich L, and Ivankovich AD, Half-life of synthetic erythrocytes. in-vivo, Anesthesiology 65.3A (1986): A94.

    Google Scholar 

  49. Hunt CA, Burnette RR, MacGregor RD, Strubbe AE, Lau DT, Taylor N, and Kawada H, Synthesis and evaluation of a prototypal artificial red cell, Science 230 (1985): 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  50. Clark LC, and Gollan F, Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure, Science 152 (1966): 1755–1756.

    Article  PubMed  CAS  Google Scholar 

  51. Sloviter HA, “Perfusion of the brain and other isolated organs with dispersed perfluoro compounds,” Blood Substitutes and Plasma Expanders, ( New York: Alan R Liss, 1978 ) 28–39.

    Google Scholar 

  52. Geyer RP, Monroe RG, and Taylor K, “Survival of rats totally perfused with a fluorocarbon-detergent preparation,” Organ Perfusion and Preservation, Ed. JC Norman 1968 85–96.

    Google Scholar 

  53. Yokoyama K, Yamanouchi K, Ohyanagi H, and Mitsuno T, Fate of perfluorochemicals in animals after intravenous injection of hemodilution with their emulsions, Chem Pharm Bull 26.3 (1978): 956–966.

    Google Scholar 

  54. Vercellotti GM, Hammerschmidt DE, Craddock PR, and Jacob HS, Activation of plasma complement by perfluorocarbon artificial blood: Probable mechanism of adverse pulmonary reactions in treated patients and rationale for corticosteroid prophylaxis, Blood 59.6 (1982): 1299–1304.

    Google Scholar 

  55. Virmani R, Fink LM, Gunter K, and English D, Effect of perfluorochemical blood substitutes on human neutrophil function, Transfusion 24 (1984): 343–347.

    Article  PubMed  CAS  Google Scholar 

  56. Faithfull NS, King CE, and Cain SM, Peripheral vascular responses to fluorocarbon administration, Microvasc Res 33.2 (1987): 183–193.

    Google Scholar 

  57. Faithfull NS, and Marshall HW, The effect of fluorocarbon emulsion on placental insufficiency, Adv Exp Med Biol 248 (1989): 357–369.

    Article  PubMed  CAS  Google Scholar 

  58. Faithfull NS, and Cain SM, Cardiorespiratory consequences of fluorocarbon reactions in dogs, Biomater Artif Cells Artif Organs 16.1–3 (1988): 463–472.

    Google Scholar 

  59. Forman MB, Bingham S, Kopeman HA, Wehr C, Sandler MP, Kolodgie F, Vaughn WK, Friesinger GC, and Virmani R, Reduction of infarct size with intracoronary perfluorochemical in a canine preparation of reperfusion, Circulation 71.5 (1985): 1060–1068.

    Google Scholar 

  60. Forman MB, Puett DW, Wilson BH, Vaughn WK, Friesinger GC, and Virmani R, Beneficial long-term effect of intracoronary perfluorochemical on infarct size and ventricular function in a canine reperfusion model, JACC 9.5 (1987): 1082–1090.

    Google Scholar 

  61. Tremper KK, Friedman AE, Levine EM, Lapin R, and Camarillo D, The preoperative treatment of severely anemic patients witha perfluorochemical oxygen-transport fluid, Fluosol-DA, New England J Med 307 (1982): 277–283.

    Article  CAS  Google Scholar 

  62. Gould SA, Rosen AL, Sehgal LR, Sehgal HL, Langdale LA, Krause LM, Rice CL, Chamberlain WH, and Moss GS, Fluosol-DA as a red-cell substitute in acute anemia, New England J Med 314.26 (1986): 1653–1656.

    Google Scholar 

  63. Marwick C, FDA committee questions Fluosol efficacy; US approval not imminent, JAMA 250 (1983): 2585–2586.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson HV, Leimgruber PP, Roubin GS, Nelson DL, and Gruentzig AR, Distal coronary artery perfusion during percutaneous transluminal coronary angioplasty, Am Heart J 110.4 (1985): 720–726.

    Google Scholar 

  65. Jaffe CC, Wohlgelernter D, Cabin H, Bowman L, Deckelbaum L, Remetz M, and Cleman M, Preservation of left ventricular ejection fraction during percutaneous transluminal coronary angioplasty by distal transcatheter coronary perfusion of oxygenaed Fluosol DA 20%, Am Heart J 115.6 (1988): 1156–1164.

    Google Scholar 

  66. Kent KM, Cleman MW, Cowley MJ, Forman M, Jafft CC, Kaplan M, King SB, Kurcoff MW, Lassar T, McAuley B, Smith R, Wisdom C, and Wohlgelernter D, Reduction of myocardial ischemia during percutaneous transluminal coronary angioplasty with oxygenated Fluosol, Am J Cardiology 66 (1990): 279–284.

    Article  CAS  Google Scholar 

  67. Lustig R, McIntosh-Lowe N, Rose C, Haas J, Krasnow s, Spaulding M, and Prosnitz L, Phase I/II study of Fluosol-DA and 100% oxygen as an adjuvant to radiation in the treatment of advanced squamous cell tumors of the head and neck, Int J Radiation Oncology Biol Phys 16 (1989): 1587–1593.

    Article  CAS  Google Scholar 

  68. Evans RG, Kimler BF, Morantz RA, Vats TS, Gemer LS, Liston V, and Lowe N, A phase I/II study of the use of Fluosol as an adjuvant to radiation therapy in the treatment of primary high-grade brain tumors, Int J Radiation Oncology Biol Phys 19 (1990): 415–420.

    Article  CAS  Google Scholar 

  69. Lustig R, Lowe N, Prosnitz L, Spaulding M, Cohen M, Stitt J, and Brannon R, Fluosol and oxygen breathing as an adjuvant to radiation therapy in the treatment of locally advanced non-small cell carcinoma of the lung: Results of a phase I/II study, Int J Radiation Oncology Biol Phys 19 (1990): 97–102.

    Article  CAS  Google Scholar 

  70. Martin DF, Porter E, Fischer JJ, and Rockwell S, Effect of a perfluorochemical emulsion on the radiation response of BA1112 Rhabdomyosarcomas, Radiation Research 112 (1987): 45–53.

    Article  PubMed  CAS  Google Scholar 

  71. Rockwell S, Use of a perfluorochemical emulsion to improve oxygenation in a solid tumor, Int J Radiation Oncology Biol Phys 11 (1985): 97–103.

    Article  CAS  Google Scholar 

  72. Rockwell S, Irvin CG, and Kelley M, Preclinical studies of a perfluorochemical emulsion as an adjunct to radiotherapy, Int J Radiation Oncology Biol Phys 15 (1988): 913–920.

    Article  CAS  Google Scholar 

  73. Teicher BA, and Rose CM, Oxygen-carrying perfluorochemical emulsion as a adjuvant to radiation therapy in mice, Cancer Research 44 (1984): 4285–4288.

    PubMed  CAS  Google Scholar 

  74. Teicher BA, Herman TS, and Rose CM, Effect of Fluosol-DA on the response of intracranial 9L tumors to x rays and BCNU, Int J Radiation Oncology Biol Phys 15 (1988): 1187–1192.

    Article  CAS  Google Scholar 

  75. Rosenblum WI, Hadfield F, Martinez AJ, and Schatzki P, Alterations of liver and spleen following intravenous infusion of fluorocarbon emulsions, Arch Pathol Lab Med 100 (1976): 213–217.

    PubMed  CAS  Google Scholar 

  76. Chen HS, and Yang ZH, Abstract: Perfluorocarbon as blood substitute in clinical applications and in war casualties, Biomater Artif Cells Artif Org 16. 1-3 (1988): 403–409.

    CAS  Google Scholar 

  77. Lowe KC, Perfluorochemical: Blood Substitutes and Beyond, Adv Mater 3.2 (1991): 87–93.

    Google Scholar 

  78. Arlen C, Follana R, Le Blanc M, Long C, Long D, Riess JG, and Valla A, Formulation of highly concentrated fluorocarbon emulsions and assessment by near-total exchange perfusion of the conscious rat, Biomater Artif Cells Artif Org 16.1–3 (1988): 455–457.

    Google Scholar 

  79. Hammerschmidt DE, and Vercellotti GM, Limitation of complement activation by perfluorocarbon emulsions: Superiority of lecithin-emulsified preparations, Biomater Artif Cells Artif Org 16.1–3 (1988): 431–438.

    Google Scholar 

  80. Long DM, Long DC, Mattrey RF, Long RA, Burgan AR, Herrick WC, and Shellhamer DF, An overview of perfluoroctylbromide — Application as a synthetic oxcygen carrier and imaging agent for X-ray, ultrasound, and nuclear magnetic resonance, Biomater Artif Cells Artif Organs 16.1–3 (1988): 411–420.

    Google Scholar 

  81. Tremper KK, Lapin R, Levine E, Friedman A, and Shoemaker WC, Hemodynamic and oxygen transport effects of a perfluorochemical blood substitute, Fluosol-DA (20%), Crit Care Med 8.12 (1980): 738–741.

    Google Scholar 

  82. Sargent JW, and Sefel RJ, Properties of perfluorinated liquids, Fed Proceed 1970 29.5 (1970): 1699–1703.

    Google Scholar 

  83. MacNicol DD, and Robertson CD, New and unexpected reactivity of saturated fluorocarbons, Nature 332 (1988): 59–61.

    Article  CAS  Google Scholar 

  84. Ackerman NB, and Hechmer PA, Effects of pharmacological agents on the microcirculation of tumors implanted in the liver, 9th European Conference on Microcirculation, (Antwerp: 1976) 301–303.

    Google Scholar 

  85. Riess JG, Blood substitutes: where do we stand with the fluorocarbon approach?, Current Surgery 45.5 (1988): 365–370.

    Google Scholar 

  86. Naito R, and Yokoyama K, Perfluorochemical Blood Substitutes Fluosol-43, Fluosol-DA, 20%, and 35% for preclinical studies as a candidate for erythrocyte substitution, Green Cross Corporation, 1978 ).

    Google Scholar 

  87. Biro GP, Biais P, and Rosen A, Perfluorocarbon Blood Substitutes, CRC Critical Reviews in Oncology/Hematology 6.4 (1987): 311–374.

    Google Scholar 

  88. Lowe KC, Perfluorocarbons as oxygen-transport fluids, Comp Biochem Physiol 87/a. 4 (1987): 825–838.

    Article  Google Scholar 

  89. Faithfull NS, Fluorocarbons, Anaesthesia 42 (1978): 234–242.

    Article  Google Scholar 

  90. Pillai R, Bando K, Schueler S, Zebley M, Reitz BA, and Baumgartner WA, Leukocyte depletion results in excellent heart-lung function after 12 hours of storage, Ann Thorac Surg 50 (1990): 211–214.

    Article  PubMed  CAS  Google Scholar 

  91. Yokoyama K, Yamanouchi K, and Murashima R, Excretion of perfluorochemicals after intravenous injection of their emulsion, Chem Pharm Bull 23.6 (1975): 1368–1373.

    Google Scholar 

  92. Oyama T, Matsuki A, Wakayama S, Tanioka F, Kudo T, and Noguchi T, “Effects of Fluosol-DA 20% infusion on circulatory and endocrine function in surgical patients,” Oxygen Carrying Colloidal Blood Substitutes (Mainz, march 1981 ), Ed. H. B. a. K. S. R Frey ( Munchen: Zuckschwerdt, 1982 ) 187–192.

    Google Scholar 

  93. Honda K, Hoshino S, Shoji M, Usuba A, Motoki R, Tsuboi M, Inoue H, and Iwaya F, Letter to Editor: Clinical use of a blood substitute, New England J Med 303. 7 (1980): 391–392.

    Google Scholar 

  94. Mitsuno T, Ohyanagi H, and Naito R, Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA), Ann Surg 195.1 (1982): 60–69.

    Google Scholar 

  95. Hirlinger WK, Grunert A, Herrmann M, Petutschnigk D, and Langer K, Auswirkungen eines teilweisen Blutaustausches mit Fluosol DA 20% auf den intakten Organismus des Schweines, Anaesthesist 31 (1982): 660–666.

    PubMed  CAS  Google Scholar 

  96. Bruneton JN, Falewee MN, Francois E, Cambon P, Philip C, Riess JG, Balu-Maestro C, and Rogopoulos A, Liver, spleen, and vessels: Preliminary clinical results of CT with perfluoroctylbromide, Radiology 170 (1989): 179–183.

    PubMed  CAS  Google Scholar 

  97. Mitsuno T, Ohyanagi H, and Yokoyama K, Development of a perfluorochemical emulsion as a blood gas carrier, Artif Organs 8.1 (1983): 25–33.

    Google Scholar 

  98. Biro GP, Effect of hemodilution with Dextran, Stroma-Free Hemoglobin Solution and Fluosol-DA on experimental myocardial ischemia in the dog, Biblthca haemat 47 (1981): 54–69.

    Google Scholar 

  99. Kloner RA, and Glogar DH, “Overview of the used of perfluorochemical for myocardial ischemic rescue,” Perfluorochemical Oxygen Transport, Ed. Tremper KK (Boston: Little, Brown & Co., 1985) 23: 115–130.

    Google Scholar 

  100. Faithfull NS, Fennema M, Erdmann W, Lapin r, Smith AR, Van Alphen W, Essed CE, and Trouwborst A, Tissue oxygenation by fluorocarbons, Adv Exp Med Biol 180 (1984): 569–580.

    PubMed  CAS  Google Scholar 

  101. Schmid-Schonbein H, Weiss J, and Ludwig H, A simple method for measuring red cell deformability in models of the microcirculation, Blut XXVI (1973): 369–379.

    Google Scholar 

  102. Barnikol WKR, and Burkhard O, Die abhangigkeit der erythrozyten-deformierbarkeit von der osmolaritat, dem pH-Wert, der temperatur und der proteinkonzentration, Funkt Biol Med 4 (1985): 55–60.

    Google Scholar 

  103. Virmani R, Warren D, Rees R, Fink LM, and English D, Effects of perfluorochemical on phagocytic function of leukocytes, Transfusion 23 (1983): 512–515.

    Article  PubMed  CAS  Google Scholar 

  104. Virmani R, Osmialowski AF, Kolodgie FD, and Forman MB, The effect of perfluorochemical Fluosol-DA (20%) on myocardial infarct healing in the rabbit, Am J Cardio Path 3.1 (1990): 69–80.

    Google Scholar 

  105. Kolodgie FD, Dawson AK, Forman MB, and Viramani R, Effect of perfluorochemical (Fluosol-DA) on infarct morphology in dogs with permanent coronary artery occlusion, Virchow Arch B 50 (1985): 119–134.

    Article  CAS  Google Scholar 

  106. Parrish MD, Olson RD, Mushlin PS, Artman M, and Boucek RJ, Treatment of postischemic reperfusion cardiac injury with a perfluorochemical solution, J Cardiovasc Pharmacol 6.1 (1984): 159–164.

    Google Scholar 

  107. Rude RE, Glogar DH, Khure S, Karaffa S, Kloner RA, Clark LC, Muller Je, and Braunwald E, (Abstract) Beneficial effects of fluorocarbons (synthetic oxygen-carrying compounds) on intramyocardial pO2 during acute myocardial ischemia, Clinical Research 28 (1980): 617A.

    Google Scholar 

  108. Biro GP, Fluorocarbon and Dextran hemodilution in myocardial ischemia, Canadian J Surgery 26.2 (1983): 163–168.

    Google Scholar 

  109. Faithfull NS, Fennema M, Erdmann W, Dhasmana MK, and Eilers G, Effects of acute ischaemia on intramyocardial oxygen tensions, Adv Exp Med Biol 200 (1986): 339–348.

    Article  PubMed  CAS  Google Scholar 

  110. Faithfull NS, Erdmann W, Fennema M, and Kok A, Effects of haemodilution with fluorocarbons or dextran on oxygen tensions in the acutely ischaemic myocardium, Br J Anaesth 58.9 (1986): 1031–1040.

    Google Scholar 

  111. Rahamatbulla P, Watanabe K, Ashraft M, and Millard RW, Myocardial function and morphology in rat hearts perfused with Krebs-Henseleit solution and perfluorocarbon emulsion, Physiologist (1984).

    Google Scholar 

  112. Nunn GR, Dance G, Peters J, and Cohn LH, Effect of fluorocarbon exchange transfusion on myocardial infarction size in dogs, Am J Cardiology 52 (1983): 203–205.

    Article  CAS  Google Scholar 

  113. Glogar DH, Kloner RA, Muller J, DeBoer WV, Braunwald E, and Clark LC, Fluorocarbons reduce myocardial ischemic damage after coronary occlusion, Science 211 (1981): 1439–1441.

    Article  PubMed  CAS  Google Scholar 

  114. Peerless SJ, Ishikawa R, Hunter IG, and Peerless MJ, Protective effect of Fluosol-DA in acute cerebral ischemia, Stroke 12.5 (1981): 558–563.

    Google Scholar 

  115. Peerless SJ, Nakamura R, Rodriquez-Salazar A, and Hunter IG, Modification of cerebral ischemia with fluosol, Stroke 16.1 (1985): 38–43.

    Google Scholar 

  116. Mizoi K, Yoshimoto T, and Suzuki J, Experimental study of new cerebral protective substances - functional recovery of severe, incomplete ischaemic brain lesions pretreated with mannitol and fluorocarbon emulsion, Acta Neurochirurgica 56 (1981): 157–166.

    Article  PubMed  CAS  Google Scholar 

  117. Kagawa S, Koshu K, Yoshimoto T, and Suzuki J, The protective effect of mannitol and perfluorochemicals on hemorrhagic infarction: an experimental study, Surgical Neurology 17.1 (1982): 66–70.

    Google Scholar 

  118. Osterholm JL, Alderman JB, Triolo AJ, D’Amore BR, Williams HD, and Frazer G, Severe cerebral ischemia treatment by ventriculosubarachnoid perfusion with an oxygenated fluorocarbon emulsion, Neurosurgery 13.4 (1983): 381–387.

    Google Scholar 

  119. Bose B, Osterholm J, Payne JB, and Chambers K, Preservation of neuronal function during prolonged focal cerebral ischemia by ventriculocisternal perfusion with oxygenated fluorocarbon emulsion, Neurosurgery 18.3 (1986): 270–276.

    Google Scholar 

  120. Osterholm JL, Alerman JB, Triolo AJ, D’Amore BR, and Williams H, Oxygenated fluorocarbon nutrient solution in the treatment of experimental spinal cord injury, Neurosurgery 15.3 (1984): 373–380.

    Google Scholar 

  121. Geyer RP, Potential uses of artificial blood substitutes, Fed Proceed 34.6 (1975): 1525–1528.

    Google Scholar 

  122. Long DM, Higgins CB, Mattrey RF, Mitten RM, and Multer FK, “Is there a time and place for radiopaque fluorocarbons?,” Preparation, Properties, and Industrial Applications of Organofluorine Compounds, Ed. RE Banks (New York, Brisbane, Chichester, Toronto: Ellis Horwood Limited, 1982 ) 139–156.

    Google Scholar 

  123. Ricci JL, Sloviter HA, and Ziegler MM, Intestinal ischemia: Reduction of mortality utilizing intraluminal perfluorochemical, Am J Surgery 149 (1985): 84–90.

    Article  CAS  Google Scholar 

  124. Liu MS, and Long DM, Biological disposition of perfluoroctylbromide: Tracheal administration in alveolography and bronchography, Investigative Radiology 11 (1976): 479–485.

    Article  PubMed  CAS  Google Scholar 

  125. Mattrey RF, Trambert MA, Brown J, Bruneton JN, Young S, Kortman K, Wesby G, and Schooley G, Summary of phase III clinical trials of imagent GI (PFOB) as a negative oral MR contrast agent, RSNA, (Chicago, IL: 1990 ).

    Google Scholar 

  126. Delpuech J-J, Hamza MA, and Serratrice G, Determination of oxygen by a nuclear magnetic resonance method, Journal of Magnetic Resonance 36 (1979): 173–179.

    CAS  Google Scholar 

  127. Reid RS, Koch CJ, Castro ME, Lunt JA, Treiber EO, Boisvert DJP, and Allen PS, The influence of oxygenation of the 19F spin-lattice relaxation rates of Fluosol-DA, Phys Med Biol 30.7 (1985): 677–686.

    Google Scholar 

  128. Authier B, Reactive hyperemia monitored on rat muscle using perflurorocarbons and 19F NMR, Magnetic Resonance in Medicine 8 (1988): 80–83.

    Article  PubMed  CAS  Google Scholar 

  129. Ceckler TL, Gibson SL, Hilf R, and Bryant R, In situ assessment of tumor vascularity using fluorine NMR imaging, Magnetic Resonance in Medicine 13 (1990): 416–433.

    Article  PubMed  CAS  Google Scholar 

  130. Patronas N, Miller DI, and Girton M, Experimental comparison of EOE-13 and perfluoroctylbromide for the CT detection of hepatic metastases, Invest Radiol 19 (1984): 570–573.

    Article  PubMed  CAS  Google Scholar 

  131. Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, and Higgins CB, Perfluoroctylbromide: A liver/spleen-specific and tumor-imaging ultrasound contrast material, Radiology 145 (1982): 759–762.

    PubMed  CAS  Google Scholar 

  132. Mattrey RF, and Andre MP, Ultrasonic enhancement of myocardial infarction with perfluorocarbon compounds in dogs, Am J Cardiol 54 (1984): 206–210.

    Article  PubMed  CAS  Google Scholar 

  133. Coley BD, Mattrey RF, Roberts A, and Keane S, Potential role of PFOB enhanced sonography of the kidney. II. Detection of partial infarction., Kidney International 39 (1991): 740–745.

    Article  PubMed  CAS  Google Scholar 

  134. Munzing D, Mattrey RF, Reznik VM, Mitten RM, and Peterson T, Potential role of PFOB enhanced sonography of the kidney. I. Detection of renal function and dacute tubular necrosis., Kidney Inter 39 (1991): 733–739.

    Article  CAS  Google Scholar 

  135. Wolf GL, Long D, and Reiss J, (Abstract) Percutaneous lymphography with PFOB emulsions, RSNA, ( Chicago: 1990 ).

    Google Scholar 

  136. Berkowitz HD, McCombs P, Sheety S, Miller LD, and Sloviter H, Fluorochemical perfusates for renal preservation, J Surg Res 20 (1976): 595–600.

    Article  PubMed  CAS  Google Scholar 

  137. Sloviter HA, and Kamimoto T, Erythrocyte substitute for perfusion of brain, Nature 216 (1967): 458–460.

    Article  PubMed  CAS  Google Scholar 

  138. Toyohira H, Taira A, Arikawa K, Hamada Y, Ohzono H, and Akita H, Isolated heart perfusion with FC-43: an experimental study, Proceedings of the IVth International Symposium Perfluorochemical Blood Substitutes, ( Kyoto: 1978 ) 161–172.

    Google Scholar 

  139. Novakova V, Birke G, Plantin LO, and Wretlind A, Studies on isolated rat liver perfused by perfluoro-compound emulsion, Fed Proceed 34.6 (1975): 1488–1492.

    Google Scholar 

  140. Skibba JL, Sonsalla J, Petroff RJ, and Denor P, Canine liver isolation-perfusion at normo- and hyperthermic temperatures with perfluorochemical emulsion (Fluosol-43), Eur Surg Res 17 (1985): 301–309.

    Article  PubMed  CAS  Google Scholar 

  141. Tauber A, Wendt P, Mittlmeier T, Stamatopoulos C, Besibarth H, Maurer P, and Blumel G, “Initial perfusion of extremities with Fluosol-43 prior to replantation-metabolic and hemodynamic investigations in rabbits,” Oxygen Carrying Colloidal Blood Substitutes (Mainz, March 1981), Ed. H. B. a. K. S. R Frey ( Munchen: Zuckschwerdt, 1982 ) 245–254.

    Google Scholar 

  142. Schindler H-G, Pennig D, Schlake W, Schonleben K, and Brug E, “Preliminarty results: The use of Fluosol-43 for intermediary perfusion in amputated limbs,” Oxygen Carrying Colloidal Blood Substitutes, Ed. H. B. a. K. S. R Frey ( Munchen: Zuckschwerdt, 1981 ) 255–260.

    Google Scholar 

  143. Honda K, Motoki R, Hoshino S, Inoue H, Usuba A, Hamada O, Iwaya F, and Ando M, Use of perfluorochemical artificial blood (Fluosol-DA) for perfusion of cadaveric kidneys for transplantation, Current Therapeutic Research 28.3 (1980): 309–318.

    Google Scholar 

  144. Fuchinoue S, Takahashi K, Teraoka S, Toma H, Ashishi T, and Ota K, Clinical experience in kidney preservation with a new fluorocarbon emulsion perfusate, Transplantation Proceed XVIII. 3 (1986): 566–570.

    Google Scholar 

  145. Greenspan JS, Wolfson MR, Rubenstein D, and Shaffer TH, Liquid ventilation of human preterm neonates, J Pediatr 117 (1990): 106–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faithfull, N.S. (1992). Artificial Oxygen Carrying Blood Substitutes. In: Erdmann, W., Bruley, D.F. (eds) Oxygen Transport to Tissue XIV. Advances in Experimental Medicine and Biology, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3428-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6516-7

  • Online ISBN: 978-1-4615-3428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics