Skip to main content

Effect of Artificial Ventilation on Pulmonary Antioxidant Enzyme Activities in a Congenital Diaphragmatic Hernia Rat Model

  • Chapter
Oxygen Transport to Tissue XIV

Abstract

Treatment of infants with congenital diaphragmatic hernia (CDH) developing respiratory insufficiency within a few hours after birth remains unsatisfactory. The incidence of CDH is about 1:3000 newborns (Hazebroek et al, 1988), mortality for these high-risk infants ranges from 30%-60%. These infants require aggressive respiratory support, including high pressures and oxygen concentrations. Frequently the clinical course is complicated by pulmonary hypertension. Compared to premature infants, CDH survivors have a high incidence (40%) of bronchopulmonary dysplasia (BPD) (Molenaar et al, 1991; Redmond et al, 1987; O’Rourke et al, 1991). Because this disease occurs almost exclusively in premature infants who receive mechanical ventilation with increased inspiratory oxygen concentration, it was postulated (Northway et al, 1967; Crapo, 1986) that oxygen alone is toxic to the lung parenchyma. Other factors that may play a role in BPD include gestational age, barotrauma, infection, the presence of a persistent ductus arteriosus (PDA), pulmonary hypertension and reperfusion damage. It is difficult to separate the effect of oxygen from those of other factors that may influence the development of BPD. Therefore the need for a reliable animal model (preferably with CDH) to study the pathogenesis of BPD and investigate protective measurements has augmented. DeLuca described barotrauma in ventilated CDH lambs; there was no specific mention of oxygen toxicity or its defense mechanisms (DeLuca et al, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Areechon W, Reid L, 1963, Hypoplasia of lung with congenital diaphragmatic hernia, Br Med J, 1: 230.

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, 1955, Zur messung von Katalase-aktivitaten, Biochem Z, 327: 255.

    PubMed  CAS  Google Scholar 

  • Biemond P, Swaak AJG, Koster JF, 1984, Protective factors against oxygen free radicals and hydogen peroxide in rheumatoid arthritis synovial fluid, Arthritis Rheum 27: 760.

    Article  PubMed  CAS  Google Scholar 

  • Conover WJ, Iman RL, 1981, Rank transformations as a bridge between parametric and nonparametric statistics, Amer Statist, 35: 124.

    Google Scholar 

  • Crapo JD, 1986, Morphologic changes in pulmonary oxygen toxicity, Ann Rev Physiol, 48: 721.

    Article  CAS  Google Scholar 

  • DeLuca U, Cloutier R, Laberge JM, Fournier L and Guttman FM, 1987, Pulmonary barotrauma in congenital diaphragmatic hernia: experimental study in lambs, J Pediatr Surg, 22: 311.

    Article  CAS  Google Scholar 

  • Frank L, Sosenko IRS, 1987a, Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant, J Pediatr, 110: 9.

    Article  PubMed  CAS  Google Scholar 

  • Frank L, Sosenko IRS, 1987b, Prenatal development of lung antioxidant enzymes in four species, J Pediatr, 110: 106.

    Article  PubMed  CAS  Google Scholar 

  • Frank L, Sosenko IRS, 1991, Failure of premature rabbit to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rabbits, Pediatr Res, 29: 292.

    Article  PubMed  CAS  Google Scholar 

  • Gerdin E, Tyden O, Eriksson UJ, 1985, The development of antioxidant enzymatic defense in the perinatal rat lung: activities of SOD, GPX, and catalase, Pediatr Res, 19: 687.

    Article  PubMed  CAS  Google Scholar 

  • Glantz SA, 1987, Primer of biostatistics, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Hayashibe H, Asayama K, Dobashi K, Kato K, 1990, Prenatal development of AOE in rat lung, kidney and heart: marked increase in immunoreactive Superoxide dismutases, glutathione peroxidase and catalase in the kidney, Pediatr Res, 27: 472.

    Article  PubMed  CAS  Google Scholar 

  • Hayatdavoudi G, O’Neill JJ, Barry BE, Freeman BA, Crapo JD, 1981, Pulmonary injury in rats following continious exposure to 60% O2 for 7 days, J Appl Physiol, 51: 1220.

    PubMed  CAS  Google Scholar 

  • Hazebroek FJW, Tibboel D, and Molenaar J, 1988, Congenital diaphragmatic hernia: the impact of preoperative stabilization. A prospective pilot study in 13 patients, J Pediatr Surg 23: 1139

    Article  PubMed  CAS  Google Scholar 

  • Hisanaga S, Shimokawa H, 1984, Unexpectedly low lecithin/sphingomyelin ratio associated with fetal diaphragmatic hernia, Am J Obstet Gynecol 149: 905.

    PubMed  CAS  Google Scholar 

  • Labarca C, Paigen K, 1980, A simple, rapid and sensitive DNA assay procedure, Anal Biochem, 102: 344.

    Article  PubMed  CAS  Google Scholar 

  • Lachmann B, Grossmann G, Freyse J, Robertson B, 1981, Lung thorax compliance in the artificially ventilated premature rabbit neonate in relation to variations in I:E ratio, Pediatr Res, 15: 833.

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951, Protein measurements with the folin phenol reagent, J Biol Chem, 193: 265.

    PubMed  CAS  Google Scholar 

  • Molenaar JC, Bos AP and Tibboel D, 1991, Congenital diaphragmatic hernia, what defect?, J Pediatr Surg, 26: 248.

    Article  PubMed  CAS  Google Scholar 

  • Northway WH, Rosan RC, Porter DY, 1967, Pulmonary disease following respiratory therapy of hyaline membrane disease, N Eng J Med, 267, 357.

    Article  Google Scholar 

  • O’Rourke PP, Lillehei CW, Crone RK, Vacanti JP, 1991, The effect of ECMO on the survival of neonates with high-risk congenital diaphragmatic hernia: 45 cases from one institution, J Pediatr Surg, 26: 147.

    Article  PubMed  Google Scholar 

  • Paglia DE, Valentine WN, 1967, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J Lab Clin Med, 70: 158.

    PubMed  CAS  Google Scholar 

  • Redmond C, Heaton J, Calix J, Graves E, Farr G and Arensman R, 1987, A correlation of pulmonary hypoplasia, MAP and survival in congenital diaphragmatic hernia treated with ECMO, J Pediatr Surg, 22, 1143.

    Article  PubMed  CAS  Google Scholar 

  • Tanswell AK, Freeman BA, 1984, Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat.I. Developmental profiles, Pediatr Res, 18: 584.

    Article  PubMed  CAS  Google Scholar 

  • Tenbrinck R, Tibboel D, Gaillard JLJ, Kluth D, Lachmann B and Molenaar JC, 1990, Experimentally induced congenital diaphragmatic hernia in rats, J Pediatr Surg, 25: 426.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tenbrinck, R. et al. (1992). Effect of Artificial Ventilation on Pulmonary Antioxidant Enzyme Activities in a Congenital Diaphragmatic Hernia Rat Model. In: Erdmann, W., Bruley, D.F. (eds) Oxygen Transport to Tissue XIV. Advances in Experimental Medicine and Biology, vol 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3428-0_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6516-7

  • Online ISBN: 978-1-4615-3428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics