Skip to main content

Conservation of Docosahexaenoic Acid in the Retina

  • Chapter
Book cover Neurobiology of Essential Fatty Acids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 318))

Abstract

Docosahexaenoic acid (22:6n-3), a polyunsaturated fatty acids (PUFA) of the n-3 family, makes up about half of the total fatty acids of vertebrate rod outer segment (ROS) phospholipids (see review by Fliesler and Anderson, 1983). This level of 22:6n-3 is among the highest reported for any membrane. The reason for the large amount of 22:6n-3 in ROS is not known, although it has been observed that membranes that are active metabolically, as in ROS, mitochondria, sperm, and synaptic vesicles, have high levels of PUFAs, while relatively inactive membranes such as myelin have low PUFA levels (Dratz and Deese, 1986; see books edited by Simopoulos et al., 1986 and Lands, 1987). Over the past 15-20 years, evidence has accumulated suggesting that 22:6n-3 is important in maintaining the normal structure and function of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre G, Alligood J, O’Brien P, Buyukmichi N (1982) Pathogenesis of progressive rod-cone degeneration in miniature poodles. Invest Ophthalmol Vis Sci 23: 610–630.

    PubMed  CAS  Google Scholar 

  • Anderson RE and Maude MB (1972) Lipids of ocular tissues: VII. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptormembranes of rat retina. Arch Biochem Biophys 151: 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Anderson GJ, Connor WE, Corliss JD (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 27: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Anderson GJ, Connor WE, Corliss JD, Lin DS (1989) Rapid modulation of the n-3 docosahexaenoic acid levels in the brain and retina of the newly hatched chick. J Lipid Res 30: 433–441.

    PubMed  CAS  Google Scholar 

  • Anderson RE, Benolken RM, Jackson MB, Maude MB (1977) The relationship between membrane fatty acids and the development of the rat retina. In: Function and biosynthesis of lipids (Bazan NG, Brenner RR, Giusto NM, eds) pp 547–559. New York: Plenum Press.

    Chapter  Google Scholar 

  • Anderson RE, Maude MB, Alvarez RA, Acland GM, Aguirre G (1991a) Plasma lipid abnormalities in the miniature poodle with progressive rod-cone degeneration. Exp Eye Res 52: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB, Alvarez RA, Nilsson SEG, Narfstr öm K, Acland GM, Aguirre G (1991b) Plasma lipid abnormalities in prcd-affected miniature poodles and Abyssinian cats. In: Retinal degenerations (Anderson RE, Hollyfield JG, La Vail MM, eds) pp 131–142. Boca Raton: CRC Press.

    Google Scholar 

  • Anderson RE, Maude MB, Lewis RA, Newsome DA, Fishman GA (1987) Abnormal plasma levels of polyunsaturated fatty acids in autosomal dominant retinitis pigmentosa. Exp Eye Res 44: 779–788.

    Article  PubMed  Google Scholar 

  • Anderson RE, Maude MB, Nielsen JC (1985) Effect of lipid peroxidation on rhodopsin regeneration. Curr Eye Res 4: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB, Nilsson SEG, Narfstr öm K (1991c) Plasma lipid abnormalities in Abyssinian cat with a hereditary rod-cone degeneration. Exp Eye Res 53: 415–417.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D, Hiramitsu T, Gutteridge J, Nilsson SG (1982) Studies on experimentally induced retinal degenerations. I. Effect of lipid peroxides on electroreti-nographic activity in the albino rabbit. Exp Eye Res 35: 157–171.

    Article  PubMed  CAS  Google Scholar 

  • Battelle B-A and La Vail MM (1978) Rhodopsin content and rod outer segment length in albino rat eyes: Modification by dark adaptation. Exp Eye Res 26: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG, Reddy TS, Redmond TM, Wiggert B, Chader GJ (1985) Endogenous fatty acids are covalently and non covalently bound to interphotoreceptorretinoid-binding protein in the monkey retina. J Biol Chem 260: 13677–13680.

    PubMed  CAS  Google Scholar 

  • Bazan NG, Rodriguez de Turco EB, Gordon WC (1991) Docosahexaenoic acid and phospholipid metabolism in photoreceptor cells and in retinal degeneration. In: Retinal degenerations (Anderson RE, Hollyfield JG, La Vail MM, eds) pp 151–165. Boca Raton: CRC Press.

    Google Scholar 

  • Bazan NG, Scott BL, Reddy TS, Pelias MZ (1986) Decreased content of docosahexanoate and arachidonate in plasma phospholipids in Usher’s syndrome. Biochem Biophys Res Commun 141: 600–604.

    Article  PubMed  CAS  Google Scholar 

  • Benolken RM, Anderson RE, Wheeler TG (1973) Membrane fatty acids associated with the electrical response in visual excitation. Science 182: 1252–1254.

    Article  Google Scholar 

  • Bourre J-M, Francois M, Youyou A, Dumont O, Piciotii O, Pascal G, Durand G (1989) The effects of dietaryα-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119: 1880–1892.

    PubMed  CAS  Google Scholar 

  • Chen H, Wiegand RD, Anderson RE (1991) Docosahexaenoic acid-containing phospholipid molecular species increase in frog retinal pigment epithelial cells following photoreceptor shedding. Invest Ophthalmol Vis Sci (Suppl) 32: 702.

    Google Scholar 

  • Connor WE, Neuringer M, Lin DS (1990) Dietary effects on brain fatty acid composition; the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes and plasma of rhesus monkeys. J Lipid Res 31: 237–247.

    PubMed  CAS  Google Scholar 

  • Converse CA, Hammer HM, Packard CJ, Shepherd J (1983) Plasma lipid abnormalities in retinitis pigmentosa and related conditions. Trans Ophthalmol Soc UK 103: 508–512.

    PubMed  Google Scholar 

  • Converse CA, McLachlan T, Bow AC, Packard CJ, Shepherd J (1987a) Lipid metabolism in retinitis pigmentosa. In: Degenerative retinal disorders: clinical and laboratory investigations (Hollyfield JG, Anderson RE, La Vail MM, eds) pp 93–101. New York: Alan R. Liss.

    Google Scholar 

  • Converse CA, McLachlan T, Bow AC, Packard CJ, Shepherd J (1987b) Lipid metabolism in retinitis pigmentosa. In: Advances in the biosciences, research in retinitis pigmentosa (Zrenner E, Krastel H, Goebel H-H, eds) pp 557–561. Oxford: Pergamon Journals Ltd.

    Google Scholar 

  • Dratz EA and Deese AJ (1986) The role of docosahexaenoic acid (22):6n-3) in biological membranes: examples from photoreceptors and model membrane bilayers. In: Health effects of polyunsaturated fatty acids in seafood (Lands WEM, ed) pp 319–351. Orlando: Academic Press, Inc.

    Google Scholar 

  • Dudley PA (1976) Control of photoreceptor membrane synthesis by essential fatty acids. Houston, TX: PhD Dissertation, Baylor College of Medicine.

    Google Scholar 

  • Fliesler SJ and Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22: 79–131.

    Article  PubMed  CAS  Google Scholar 

  • Futterman S, Downer JL, Hendrickson A (1971) Effect of essential fatty acid deficiency on the fatty acid composition, morphology, and electroretinographic response of the retina. Invest Ophthalmol 10: 151–156.

    PubMed  CAS  Google Scholar 

  • Galli C, Trzeciak HI, Paoletti R (1971) Effects of dietary fatty acids on the fatty acid composition of the brain ethanolamine phosphoglyceride: Reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids. Biochim Biophys Acta 248:449–454.

    Article  CAS  Google Scholar 

  • Garrido A, Garrido F, Guerra R, Valenzuela A (1989) Ingestion of high doses of fish oil increases the susceptibility of cellular membranes to the induction of oxidative stress. Lipids 24: 833–835.

    Article  PubMed  CAS  Google Scholar 

  • Gordon WC and Bazan1 NG (1990) Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J Neurosci 10: 2190–2204.

    PubMed  CAS  Google Scholar 

  • Hiramitsu TY, Hirato K, Nishigaki I, Yagi K (1977) The formation of lipoperoxide in the retina of rabbits exposed to high concentrations of oxygen. Experientia 32: 622–623.

    Article  Google Scholar 

  • Hiramitsu TY, Hasegawa Y, Hirata K, Nishigaki I, Yagi K (1976) Lipid peroxide formation in the retina in ocular siderosis. Experientia 32: 1324–1325.

    Article  PubMed  CAS  Google Scholar 

  • Lands WEM, ed. (1987) Proceedings of the AOCS short course on polyunsaturated fatty acids and eicosanoids. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • Lin DS, Connor WE, Anderson GJ, Neuringer M (1990) Effects of dietary n-3 fatty acids on the phospholipid molecular species of monkey brain. J Neurochem 55: 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  • Louie K, Zimmerman WF, Keys S, Anderson RE (1991) Phospholipid molecular species from isolated bovine rod outer segments incorporate exogenous fatty acids at different rates. Exp Eye Res 53: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Narfstr öm K (1983) Hereditary progressive retinal atrophy in the Abyssinian cat. J Hered 74: 273–276.

    Google Scholar 

  • Neuringer M and Connor WE (1986) N-3 fatty acids in the brain and retina: Evidence for their essentiality. Nutr Rev 44: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M and Connor WE (1987) The importance of dietary n-3 fatty acids in the development of the retina and nervous system. In: Proceedings of the AOCS short course on polyunsaturated fatty acids and eicosanoids (Lands WEM ed) pp 301–311. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • Neuringer M, Connor WE, Lin DS, Anderson GL, Barstad L (1991) Dietary omega-3 fatty acids: Effects on retinal lipid composition and function in primates. In: Retinal degenerations (Anderson RE, Hollyfield JG, La Vail MM, eds) pp 117–129. Boca Raton: CRC Press.

    Google Scholar 

  • Neuringer M, Connor WE, Lin DS, Barstad L, Luck S (1986) Biochemical and functional effects of prenatal and postnatal n-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83: 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M, Connor WE, Van Patten C, Barstad L (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5: 450–473.

    PubMed  CAS  Google Scholar 

  • Organisciak DT, Favreau P, Wang H-M (1983) The enzymatic estimation of organic hydroperoxides in the rat retina. Exp Eye Res 36: 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Organisciak DT, Jiang Y-L, Wang H-M, Pickford M, Blanks JC (1989b) Retinal light damage in rats exposed to intermittent light. Invest Ophthalmol Vis Sci 30: 795–805.

    PubMed  CAS  Google Scholar 

  • Organisciak DT, Wang H-M, Li A-Y, Tso MOM (1985) The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 26: 1580–1588.

    PubMed  CAS  Google Scholar 

  • Organisciak DT, Wang H-M, Noell WK (1987) Aspects of the ascorbate protective mechanism in retinal light damage of rats with normal and reduced ROS docosahexaenoic acid. In: Degenerative retinal disorders: clinical and laboratory investigations (Hollyfield JG, Anderson RE, La Vail MM, eds) pp 455–468. New York: Alan R. Liss.

    Google Scholar 

  • Organisciak DT, Wang H-M, Xie A, Reeves DS, Donoso LA (1989a) Intense light-mediated changes in rat rod outer segment lipids and proteins. In: Inherited and environmentally induced retinal degenerations (LaVail MM, Anderson RE, Hollyfield JG, eds) pp 493–512. New York: Alan R. Li

    Google Scholar 

  • Penn JS and Anderson RE (1987) Effect of light history on rod outer-segment membrane composition in the rat. Exp Eye Res 44: 767–778.

    Article  PubMed  CAS  Google Scholar 

  • Penn JS, Naash MI, Anderson RE (1987) Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Exp Eye Res 44: 779–788.

    Article  PubMed  CAS  Google Scholar 

  • Rapp LM, Wiegand RW, Anderson RE (1982) Ferrous ion-mediated retinal degeneration: Role of rod outer segment lipid peroxidation. In: Problems of normal and genetically abnormal retinas (Clayton R, Haywood J, Reading H, Wright A, eds) pp 109–119. New York: Academic Press.

    Google Scholar 

  • Simopoulos AP, Kifer RR, Martin RE (1986) Health effects of polyunsaturated fatty acids in seafood. Orlando, FL: Academic Press.

    Google Scholar 

  • Stinson AM, Wiegand RD, Anderson RE (in press) Mechanisms of conservation of docosahexaenoic acid during n-3 fatty acid deficiency. J Lipid Res.

    Google Scholar 

  • Tinoco J (1982) Dietary requirements and function ofα-linolenic acid in animals Prog Lipid Res 21: 1–45.

    CAS  Google Scholar 

  • Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR (1990) Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res 28: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe I, Kato M, Aonuma H, Hishimoto A, Naito Y, Moriuchi A, Okuyama H (1987) Effect of dietary alpha-linolenate/linoleate balance on the lipid composition and electroretinographic responses in rats. In: Advances in the biosciences. Research in retinitis pigmentosa (Zrenner E, Krastel H, Goebel HH, eds) pp 563–570. Oxford: Pergamon Journals Ltd.

    Google Scholar 

  • Wheeler TG, Benolken RM, Anderson RE (1975) Visual membrane: Specificity of fatty acid precursors for the electrical response to illumination. Science 188: 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand RD and Anderson RE (1982) Determination of molecular species of rod outer segment phospholipids. In: Methods of enzymology, Visual pigments and purple membranes (Packer L, ed) pp 297–304. New York: Academic Press.

    Chapter  Google Scholar 

  • Wiegand RD, Giusto NM, Rapp LM, Anderson RE (1983) Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci 24: 1433–1435.

    PubMed  CAS  Google Scholar 

  • Wiegand RD, Joel CD, Rapp LM, Nielsen JC, Maude MB, Anderson RE (1986) Polyunsaturated fatty acid and vitamin E in rat rod outer segments during light damage. Invest Ophthalmol Vis Sci 27: 727–733.

    PubMed  CAS  Google Scholar 

  • Wiegand RD, Koutz CA, Stinson AM, Anderson RE (1991) Conservation of docosahexaenoic acid in rod outer segment of rat retinas during n-3 and n-6 fatty acid deficiency. J Neurochem 57: 1690–1699.

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Matsuoka S, Ohkawa H, Oshihi N, Takeguchi Y, Kakai H (1977) Lipoperoxide level in the retina of chick embryo exposed to high concentration of oxygen. Clin Chim Acta 80: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Hashimoto A, Takemoto Y, Okuyama H, Nomura M, Kitajima R, Tagashi T, Tamai Y (1988) Effect of the dietaryα-linolenate/linoleate balance on lipid compositions and learning ability of rats. II. Discrimination process, extinction process, and glycolipid compositions. J Lipid Res 29: 1013–1021.

    PubMed  CAS  Google Scholar 

  • Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol 15: 700–725.

    CAS  Google Scholar 

  • Zimmerman WF and Keys S (1988) Acylation and deacylation of phospholipids in isolated bovine rod outer segments. Exp Eye Res 47: 247–260.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, R.E., O’Brien, P.J., Wiegand, R.D., Koutz, C.A., Stinson, A.M. (1992). Conservation of Docosahexaenoic Acid in the Retina. In: Bazan, N.G., Murphy, M.G., Toffano, G. (eds) Neurobiology of Essential Fatty Acids. Advances in Experimental Medicine and Biology, vol 318. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3426-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3426-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6515-0

  • Online ISBN: 978-1-4615-3426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics