Skip to main content

Metabotropic Glutamate Receptors and Neuronal Toxicity

  • Chapter
Neurobiology of Essential Fatty Acids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 318))

Abstract

Specific glutamate receptors coupled to polyphosphoinositide (PPI) hydrolysis have been described in brain slices, cultured neurons, and astrocytes, and in amphibian oocytes injected with rat brain mRNA (Sladeczek et al., 1985; Nicoletti et al., 1986a,b; Sugiyama et al., 1987). In most of the systems, metabotropic receptors are activated by lS,3R-aminocyclopentandicarboxylic acid (ACPD), quisqualate, ibotenate, and L-glutamate, but not by α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) (Nicoletti et al., 1986a; Schoepp and Johnson, 1988; 1989; Palmer et al., 1989). Trans-ACPD has been described as the most selective agonist of metabotropic receptors (Palmer et al., 1989), although it is less potent than quisqualate in stimulating inositolphosphate formation. In brain slices, stimulation of PPI hydrolysis by metabotropic receptor agonists is extremely high at the earlier stages of postnatal development (within the first 2 weeks after birth) and progressively declines during maturation (Nicoletti et al., 1986a). In adult tissue, the activation of metabotropic receptors is amplified in response to deafferentation (Nicoletti et al., 1987), as well as after induction of long-term potentiation (Aronica et al., 1991) or electrical kindling (Iadarola et al, 1986; Akiyama et al., 1987). Hence, it is likely that metabotropic receptors contribute to the synaptic events involved in the regulation of neuronal plasticity. However, based on the toxic effects of quisqualate in hippocampal slices (Garthwaite and Garthwaite, 1989) and cultured cortical neurons (Patel et al., 1990), a role for metabotropic receptors in the mechanism of neuronal degeneration has been suggested. We have addressed this problem in primary cultures of cerebellar neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama K, Norihito Y, Mitsumoto S (1987) Increase in ibotenate-stimulated phosphatidylinositol hydrolysis in slices of the amygdala/pyriform cortex and hippocampus of rat by amygdala kindling. Exp Neurol 98: 499.

    Article  PubMed  CAS  Google Scholar 

  • Alho H, Ferrarese C, Vicini S, Vaccarino F (1988) Subsets of Gabaergic neurons in dissociated cell cultures of neonatal rat cerebral cortex show co-localization with specific modulator peptides. Dev Brain Res 39: 193.

    Article  CAS  Google Scholar 

  • Aronica E, Grey U, Wagner M, Schroeder H, Krug M, Ruthrich H, Catania MV, Nicoletti F, Reymann KG (1991) Enhanced sensitivity of “metabotropic“ gluta-mate receptors after induction of long-term potentiation in rat hippocampus. J Neurochem 57: 376.

    Article  PubMed  CAS  Google Scholar 

  • Balàzs R and Jorgensen OS (1987) Trophic function of excitatory transmitter amino acids. Neuroscience 22: S41.

    Google Scholar 

  • Balàzs R, Jorgensen OS, Hack N (1988) N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27: 437.

    Article  PubMed  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159.

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Kadri MM, Monaghan DT, Nunn PB, Watkins JC, Cotman CW (1988) Inhibition of [3H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding by the excitotoxin ß-N-oxalyl-L-αß-diaminopropionic acid. Eur J Pharmacol 145: 357.

    Article  PubMed  CAS  Google Scholar 

  • Cha JH-J, Makowiec RL, Penney JB, Young AB (1990) AP3 and LBHAA displace [3H]glutamate binding to the metabotropic receptor. Proc. 20th Annual Meeting of the American Society for Neuroscience. October 28-November 2, St. Louis, MO, Abstract #231.19.

    Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL and Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40: 145.

    Google Scholar 

  • Copani A, Canonico PL, Catania MV, Aronica E, Bruno V, Ratti E, vanAmsterdam FTM, Gaviraghi G, Nicoletti F (1991) Interaction between ß-N-methyl-amino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res 558: 79.

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Canonico PL, Nicoletti F (1990) Beta-N-methylamino-L-alanine (L—BMAA) is a potent agonist of’ metabolotropic’ glutamate receptors. Eur J Pharmacol 181: 327

    Article  PubMed  CAS  Google Scholar 

  • Duncan MW, Steele JC, Kopin IJ, Marker SP (1990) 2-Amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: An unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 40: 767.

    Article  PubMed  CAS  Google Scholar 

  • Favaron M, Money H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci USA 85: 7351.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A and Schousboe A (1991) Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56: 1075.

    Article  PubMed  CAS  Google Scholar 

  • Garruto RM, Yanagihara R, Gajdusek DC (1985) Disappearance of high-incidence amyotrophic lateral sclerosis and parkinsonism dementia on Guam. Neurology 35: 193.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G and Garthwaite J (1989) Quisqualate neurotoxicity: a delayed, CNQX-sensitive process triggered by a CNQX-insensitive mechanism in young rat hippocampal slices. Neurosci Lett 99: 113.

    Article  PubMed  CAS  Google Scholar 

  • Iadarola MJ, Nicoletti F, Naranjo JR, Putnam F, Costa E (1986) Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res 374: 174.

    Article  Google Scholar 

  • Koh J, Palmer E, Cotman CW (in press) Activation of the metabotropic glutamate receptors attenuates N-methyl-D-aspartate in cortical neurons. Proc Natl Acad Sci USA.

    Google Scholar 

  • Nicoletti F, Iadarola MJ, Wroblewski JT, Costa E (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with α1-adrenoceptors. Proc Natl Acad Sci USA 83: 1931.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F, Wroblewski JT, Alho H, Eva C, Fadda E, Costa E (1987) Lesions of putative glutamatergic pathways potentiate the increase in inositol phospholipid hydrolysis elicited by excitatory amino acids. Brain Res 436: 103.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A, Costa E (1986b) The activation of inositol phospholipid metabolism as a signal transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6: 1905.

    PubMed  CAS  Google Scholar 

  • Novelli A, Nicoletti F, Wroblewski JT, Alho H, Costa E, Guidotti A (1987) Excitatory amino acids receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells. J Neurosci 7: 40.

    PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205.

    Article  PubMed  CAS  Google Scholar 

  • Palmer E, Monaghan DT, Cotman CW (1989) Trans-ACPD, a selective agonist of phosphoinositide-coupled excitatory amino acid receptors. Eur J Pharmacol 166: 585.

    Article  PubMed  CAS  Google Scholar 

  • Patel J, Zinland WC, Klika AB, Mangano TJ, Keith RA, Salama AI (1990) 6,7-Dinitroquinoxaline-2,3-dione blocks the cytotoxicity of N-methyl-D-aspartate and kainate, but not quisqualate, in cortical cultures. J Neurochem 55: 114.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA and Brierley JB (1979) A new model of bilateral hemispheric ischemia in unanesthetized rat. Stroke 10: 267.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers-Johnson P, Garruto RM, Yanagihara R, Chen KM, Gajdusek DC, Gibbs CJ Jr, (1986) Amyotrophic lateral sclerosis and parkinsonism-dementia on Guam: A 30 year evaluation of clinical and neuropathologic trends. Neurology 36: 7.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD and Johnson BJ (1988) Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J Neurochem 50: 1605.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD and Johnson BJ (1989) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-aminophos-phonopro-pionate. J Neurochem 53: 1865.

    Article  PubMed  CAS  Google Scholar 

  • Seren MS, Aldinio C, Zanoni R, Leon A, Nicoletti F (1990) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischaemia. J Neurochem 53: 1700.

    Article  Google Scholar 

  • Siesjo BK and Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9: 127.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Pin J-P, Recasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317: 717.

    Article  PubMed  CAS  Google Scholar 

  • Spencer P, Boy DN, Ludolph A, Hugon J, Dwivedi MP, Schaumberg HH (1986) Lathyrism: evidence for role of the neuroexcitatory amino acid BOAA. Lancet ii: 1066.

    Article  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Boss SM, Boy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis: dementia linked to a plant excitant neurotoxin. Science 237: 517.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Ito I, Hirono C (1987) A new type of glutamate receptor linked to inositol phosphate metabolism. Nature 325: 531.

    Article  PubMed  CAS  Google Scholar 

  • Weiss JH and Choi DW (1988) ß-N-methylamino-L-alanine neurotoxicity: requirement for bicarbonate as a co-factor. Science 241:973.

    Article  PubMed  CAS  Google Scholar 

  • Weiss JH, Christine CM, Choi DW (1989) Bicarbonate dependence of glutamate receptor activation by ß-N-methylamino-L-alanine: Channel recording and study with related compounds. Neuron 3: 321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aleppo, G. et al. (1992). Metabotropic Glutamate Receptors and Neuronal Toxicity. In: Bazan, N.G., Murphy, M.G., Toffano, G. (eds) Neurobiology of Essential Fatty Acids. Advances in Experimental Medicine and Biology, vol 318. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3426-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3426-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6515-0

  • Online ISBN: 978-1-4615-3426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics