Advertisement

Neural Transplantation and Recovery of Function: Animal Studies

  • John D. Sinden
  • Kathryn M. Marsden
  • Helen Hodges
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 325)

Abstract

Experiments on the transplantation of brain tissue in mammalian species began as early as the end of the nineteenth century133. In spite of a long scientific past and some excellent demonstrations prior to 1940 that grafted neonatal30 and embryonic82 central nervous system (CNS) tissue could under certain circumstances survive and differentiate in the host brain, little scientific interest in neural transplantation arose for several decades. The modern era commenced only in the mid-seventies, when two critical observations created a new zeitgeist by showing that neural transplants possessed the potential for a greater understanding of development and plasticity within the CNS, functional interrelationships between neural systems and, of most importance to this review, the capacity to repair damaged neuronal circuits and functional systems.

Keywords

Dentate Gyrus Basal Forebrain Radial Maze Behavioral Recovery Motor Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, T.G., Mitchell, S.J., Aggleton, J.P., Delong, M.R, Struble, R.G., Price, D.L., Wenk, G.L., Pettigrew, K.L., and Mishkin, M., 1991, Transient impairment of recognition memory following ibotenic-acid lesions of the basal forebrain in macaques, Exp. Brain Res., 86, 18–26.Google Scholar
  2. 2.
    Alheid, G.F., and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata, NeuroSci., 27, 1–39.Google Scholar
  3. 3.
    Annett, L.E., Dunnett, S.B., Torres, E.M., Ridley, R.M., Baker, H.F., and Marsden, C.D., 1991, Behavioural assessment of embryonic nigral grafts placed in the caudate nucleus and/or putamen of 6-OHDA lesioned marmosets, Eur. J. NeuroSci., Suppl 4, 248–248.Google Scholar
  4. 4.
    Arendash, G.W., Millard, W.J., Dunn, A.J., and Meyer, E.M., 1987, Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat, Science, 23, 952–956.Google Scholar
  5. 5.
    Arendt, T., Allen, Y., Marchbanks, R., Schugens, M.M., Sinden, J., Lantos, P.L., and Gray, J.A., 1989, Cholinergic system and memory in the rat: effects of chronic ethanol, embryonic basal forebrain transplants and excitotoxic lesions of cholinergic basal forebrain projection systems, NeuroSci., 33, 435–462.Google Scholar
  6. 6.
    Arendt, T., Allen, Y., Sinden, J., Schugens, M.M., Marchbanks, R.M., Lantos, P.L., and Gray, J.A, 1988, Cholinergic-rich brain transplants reverse alcohol-induced memory deficits, Nature, 332, 448–450.Google Scholar
  7. 7.
    Arendt, T., Bigl, V., Arendt, A., and Tennstedt, A., 1983, Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease, Acta Neuropathol., 61, 101–108.Google Scholar
  8. 8.
    Augusti-Tocco, G., and Sato, G., 1969, Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Nat. Acad. Sci. USA, 64, 311–315.Google Scholar
  9. 9.
    Backlund, E.O., Granberg, P.O., Hamberger, B., Knutsson, E., Martensson, A, Sedvall, G., Seiger, A, and Olson, L., 1985, Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials, J. Neurosurg., 62, 169–173.Google Scholar
  10. 10.
    Barone Jr., S., Tandon, P., McGinty, J.F., and Tilson, H.A, 1991, The effects of NGF and fetal cell transplants on spatial learning after intradentate administration of colchicine, Exper. Neurol., 114, 351–363.Google Scholar
  11. 11.
    Bartus, R.T., Dean, R.L., Beer, B., and Lippa, AS., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science, 217, 408–417.Google Scholar
  12. 12.
    Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature, 321, 168–171.Google Scholar
  13. 13.
    Bjürklund, A, Gage, F.H., Stenevi, U., and Dunnett, S.B., 1983, Intracerebral grafting of neuronal cell suspensions. IV. Survival and growth of intrahippocampal implants of septal cell suspensions, Acta Physiol. Scand., Suppl. 522, 49–58.Google Scholar
  14. 14.
    Björklund, A, Schmidt, R.H., and Stenevi, U., 1980, Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra, Cell Tiss. Res., 212, 39–45.Google Scholar
  15. 15.
    Björklund, A, and Stenevi, U., 1984, Intracerebral neural transplants: neuronal replacement and reconstruction of damaged circuitries, Ann. Rev. NeuroSci., 7, 279–308.Google Scholar
  16. 16.
    Björklund, A, Stenevi, U., Schmidt, R.H., Dunnett, S.B., and Gage, F.H., 1983, Intracerebral grafting of neuronal cell suspensions. 1. Introduction and general methods of preparation, Acta PhysioL Scand., Suppl. 522, 1–7.Google Scholar
  17. 17.
    Bohn, M.C, Cupit, L., Marciano, F., and Gash, D.M., 1987, Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers, Science, 237, 913–916.Google Scholar
  18. 18.
    Bolam, J.P., Freund, T.F., Björklund, A, Dunnett, S.B., and Smith, A.D., 1987, Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host neostriatum, Exp. Brain Res., 68, 131–146.Google Scholar
  19. 19.
    Bowen, D.M., Smith, C.B., White, P., and Davison, AN., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain, 99, 459–496.Google Scholar
  20. 20.
    Bragin, A.G., Bohne, A., Kitchigina, V.F., and Vinogradova, O.S., 1990, Functional integration of neurons in homotopic and heterotopic intracortical grafts with the host brain, Prog. Brain Res., 82, 287–300.Google Scholar
  21. 21.
    Brion, J.P. 1990, Molecular pathology of Alzheimer amyloid and neurofibrillary tangles, Sem NeuroSci., 2, 89–100.Google Scholar
  22. 22.
    Carder, R.K., Snyder-Keller, A.M., and Lund, R.D., 1988, Behavioral and anatomical correlates of immunologically induced rejection of nigral xenografts, J. Compo Neurol., 277, 391–402.Google Scholar
  23. 23.
    Clarke, D.J., Gage, F.H., and Björklund, A., 1986, Formation of cholinergic synapses by intrahippocampal septal grafts as revealed by cholineacetyltransferase immunocytochemistry, Brain Res., 369, 151–162.Google Scholar
  24. 24.
    Clarke, D.J., Nilsson, O.G., Brundin, P., and Björklund, A, 1990, Synaptic connections formed by grafts of different types of cholinergic neurons in the host hippocampus, Exp. Neurol., 107, 11–22.Google Scholar
  25. 25.
    Collerton, D., 1986, Cholinergic function and intellectual decline in Alzheimer’s disease, NeuroSci., 9, 1–28.Google Scholar
  26. 26.
    Dalrymple-Alford, J.C., Kelche, C., Cassel, J.C., Toniolo, G., Pallage, V., and Will, B.E., 1988, Behavioral deficits after intrahippocampal fetal septal grafts in rats with selective fimbria-fornix lesions, Exp. Brain Res., 69, 545–558.Google Scholar
  27. 27.
    Deckel, A.W., Moran, T.H., Coyle, J.T., Sanberg, P.R, and Robinson, R.G., 1986, Anatomical predictors of behavioral recovery following fetal striatal transplants, Brain Res., 365, 249–258.Google Scholar
  28. 28.
    Dekker, A.J.A.M., Connor, D.J., and Thal, L.J., 1991, The role of cholinergic projections from the nucleus basalis in memory, Neurosci. Biobehav. Rev., 15, 299–317.Google Scholar
  29. 29.
    Drachman, D.A., and Leavitt, J, 1974, Human memory and the cholinergic system, Arch. Neurol., 30, 113–121.Google Scholar
  30. 30.
    Dunn, E.H. 1917, Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat, J. Compo Neurol., 27, 565–582.Google Scholar
  31. 31.
    Dunnett, S.B., 1990, Neural transplantation in animal models of dementia, Eur. J. NeuroSci., 2, 567–587.Google Scholar
  32. 32.
    Dunnett, S.B., 1991, Transplantation of embryonic dopamine neurons-what we know from rats, J. Neurol., 238, 65–74.Google Scholar
  33. 33.
    Dunnett, S.B., Björklund, A, Stenevi, U., and Iversen, S.D., 1981, Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. J. Unilateral lesions, Brain Res., 215, 147–161.Google Scholar
  34. 34.
    Dunnett, S.B., Everitt, B.J., and Robbins, T.W., 1991, The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions, Trends NeuroSci., 14, 494–501.Google Scholar
  35. 35.
    Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., Clarke, D.J., and Björklund, A, 1988, Striatal grafts in rats with unilateral neostriatal lesions-III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching, NeuroSci., 24, 813–820.Google Scholar
  36. 36.
    Dunnett, S.B., Low, W.C., Iversen, S.D., Stenevi, U., and Björklund, A, 1982, Septal transplants restore maze learning in rats with fornix-fimbria lesions, Brain Res., 251, 335–348.Google Scholar
  37. 37.
    Dunnett, S.B., Ryan, C.N., Levin, P.D., Reynolds, M., and Bunch, S.T., 1987, Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions, Behav. NeuroSci., 101, 489–503.Google Scholar
  38. 38.
    Dunnett, S.B., Toniolo, G., Fine, A., Ryan, C.N., Björklund, A., and Iversen, S.D., 1985, Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis-II. Sensorimotor and learning impairments, NeuroSci., 16, 787–797.Google Scholar
  39. 39.
    Dunnett, S.B., Whishaw, I.Q., Rogers, D.C., and Jones, G.H., 1987, Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions, Brain Res., 415, 63–78.Google Scholar
  40. 40.
    Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Stromberg, I., and Persson, H., 1989, A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons, Proc. Nat. Acad. Sci. USA, 86, 4756–4760.Google Scholar
  41. 41.
    Field, P.M., Seeley, P.J., Frotscher, M., and Raisman, G., 1991, Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons, NeuroSci., 41, 713–727.Google Scholar
  42. 42.
    Fischer, W., Wictorin, K., Björklund, A., Williams, L.R, Varon, S., and Gage, F.H., 1987, Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor, Nature, 329, 65–68.Google Scholar
  43. 43.
    Fisher, L.J., Jinnah, H.A., Kale, L.C., Higgins, G.A., and Gage, F.H., 1991, Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa, Neuron, 6, 371–380.Google Scholar
  44. 44.
    Freed, W.J., 1983, Functional brain tissue transplantation: reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts, with a note on intracranial retinal grafts, Biol. Psychiat., 18, 1205–1261.Google Scholar
  45. 45.
    Freed, W.J., Perlow, M.J., Karoum, F., Seiger, A., Olson, L., Hoffer, B.J., and Wyatt, R.J. 1980, Restoration of doparninergic function by grafting of fetal rat substantia nigra to the caudate nucleus: Long-term behavioral, biochemical and histochemical studies, Ann. Neural., 8, 510–519.Google Scholar
  46. 46.
    Freed, W.J., Poltorak, M., and Becker, J.B., 1990, Intracerebral adrenal medulla grafts: a review, Exp. Neural., 110, 139–166.Google Scholar
  47. 47.
    Freund, T.E., Bolam, J.P., Bjürklund, A., Dunnett, S.B., and Smith, A.D., 1985, Efferent synaptic connections of grafted doparninergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunohistochemical study, J. NeuroSci., 5, 603–616.Google Scholar
  48. 48.
    Gage, F.H., 1990, Intracerebral grafting of genetically modified cells acting as biological pumps, Trends Pharmacal. Sci., 11, 437–439.Google Scholar
  49. 49.
    Gage, F.H., and Björklund, A., 1986, Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism, au]., 6, 2837–2847.Google Scholar
  50. 50.
    Gage, F.H., Björklund, A., Stenevi, U., Dunnett, S.B., and Kelly, P.A.T., 1984, Intrahippocampal septal grafts ameliorate learning impairments in aged rats, Science., 225, 533–536.Google Scholar
  51. 51.
    Gage, F.H., Dunnett, S.B., Stenevi, U., and Björklund, A., 1983, Aged rats: recovery of motor impairments by intrastriatal nigral grafts, Science., 221, 966–969.Google Scholar
  52. 52.
    Gage, F.H., and Fisher, L.J., 1991, Intracerebral grafting: a tool for the neurobiologist, Neuron, 6, 1–12.Google Scholar
  53. 53.
    Gash, D.M., Notter, M.F.D., Okawara, S.H., Kraus, A.L., and Joynt, R.J., 1986, Amitotic neuroblastoma cells used for neural implants in monkeys, Science., 233, 1420–1422.Google Scholar
  54. 54.
    Gibbs, R.B., Harris, E.W., and Cotman, C.W., 1985, Replacement of damaged cortical projections by homotypic transplants of entorhinal cortex, J. Camp. Neural., 237, 47–65.Google Scholar
  55. 55.
    Goedert, M., Fine, A., Hunt, S.P., and Ullrich, A., 1986, Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system. Lesion effects in the rat brain and levels in Alzheimer’s disease, Mol. Brain Res., 1, 85–92.Google Scholar
  56. 56.
    Gray, J.A, Feldon, J., Rawlins, J.N.P., Hemsley, D.R, and Smith, A.D., 1991, The neuropsychology of schizophrenia, Behav. Brain Sci., 14, 1–84.Google Scholar
  57. 57.
    Gray, J.A, Sinden, J., and Hodges, H., 1990, Cognitive function: neural degeneration and transplantation, Sem. NeuroSci., 2, 133–142.Google Scholar
  58. 58.
    Hansen, J.T., Notter, M.F.D., Okawara, S.H., and Gash, D.M., 1988, Organization, fine structure and viability of the human adrenal medulla: considerations for neural transplantation, Ann. Neurol., 24, 599–609.Google Scholar
  59. 59.
    Hodges, H., Allen, Y., Kershaw, T., Lantos, P.L., Gray, J.A, and Sinden, J., 1991, Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 1. Amelioration of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain, NeuroSci., 45, 587–607.Google Scholar
  60. 60.
    Hodges, H., Allen, Y., Sinden, J., Lantos, P.L., and Gray, J.A., 1991, The effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 2. Cholinergic drugs as probes to investigate lesion-induced deficits and transplant-induced functional recovery, NeuroSci., 45, 609–623.Google Scholar
  61. 61.
    Hodges, H., Allen, Y., Sinden, J., Mitchell, S.N., Lantos, P.L., and Gray, J.A., 1991, The effects of cholinergic drugs and cholinergic-rich foetal neural transplants on alcohol-induced deficits in radial-maze performance in rats, Behav. Brain Res., 43, 7–28.Google Scholar
  62. 62.
    Hodges, H., Sinden, J., Turner, J.J., Netto, C.A, Sowinski, P., and Gray, J.A., 1992, Nicotine as a tool to characterise the role of forebrain cholinergic projection system in cognition, in The Biology of Nicotine, P.M. Lipiello, A.C. Collins, J.A. Gray, and J.H. Robinson, eds., pp. 157–180, Raven Press, New York.Google Scholar
  63. 63.
    Horellou, P., Brundin, P., Kalen, P., Mallet, J., and Björklund, A., 1990, In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum, Neuron, 5, 393–402.Google Scholar
  64. 64.
    Horneykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Phannacol. Rev., 18, 925–964.Google Scholar
  65. 65.
    Hyman, C., Hofer, M., Barde, Y.A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., and Lindsay, R.M., 1991, BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra, Nature, 350, 230–232.Google Scholar
  66. 66.
    Kawabata, S., Higgins, G.A., and Gordon, J.W., 1991, Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein, Nature, 354, 476–478.Google Scholar
  67. 67.
    Kawaja, M.D., Fagan, A.M., Firestein, B.L., and Gage, F.H., 1991, Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum: assessment of graft size and ultrastructure, J. Camp. Neural., 307: 695–706.Google Scholar
  68. 68.
    Kawaja, M.D., and Gage, F.H., 1991, Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor, Neuron, 7, 1019–1030.Google Scholar
  69. 69.
    Kershaw, T.R., Sinden, J.D., Allen, Y.S., Gray, J.A, and Lantos, P.L., 1990, Behavioural recovery following transplantation of the neuroblastoma cell line IMR-32, Prog. Brain Res., 82, 47–53.Google Scholar
  70. 70.
    Kesslak, J.P., Nieto-Sampedro, M., Globus, J., and Cotman, C.W., 1986, Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation, Exper. Neurol., 92, 377–390.Google Scholar
  71. 71.
    Kesslak, J.P., Walencewicz, A., Calin, L., Nieto-Sampedro, M., and Cotman, C.W., 1988, Hippocampal but not astrocyte transplants enhance recovery on a forced choice alternation task after kainate lesions, Brain Res., 454, 347–354.Google Scholar
  72. 72.
    Kimble, D.P., 1990, Functional effects of neural grafting in the mammalian central nervous system, Psychol. Bull., 108, 462–479.Google Scholar
  73. 73.
    Kimble, D.P., Bremiller, R., and Stickrod, G., 1986, Fetal brain implants improve maze performance in hippocampallesioned rats, Brain Res., 363, 356–363.Google Scholar
  74. 74.
    Kirschner, N., 1975, Functional organisation of the adrenal chromaffin vesicles, Adv. Biochem. Psychopharmacol., 13, 95–107.Google Scholar
  75. 75.
    Knusel, B., Winslow, J.W., Rosenthal, A., Barton, L.E., Seid, D.P., Nikolics, K., and Hefti, F., 1991, Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3, Proc. Nat. Acad. Sci. USA, 88, 961–965.Google Scholar
  76. 76.
    Kolb, B., 1984, Functions of the frontal cortex of the rat: a comparative review, Brain Res. Rev., 8, 65–98.Google Scholar
  77. 77.
    Kolb, B., Reynolds, B., and Fantie, B., 1988, Frontal cortex grafts have opposite effects at different postoperative recovery times, Behav. Neural Biol., 50, 193–206.Google Scholar
  78. 78.
    Kordower, J.H., Notter, M.F.D., and Gash, D.M., 1987, Neuroblastoma cells in neural transplants: a neuroanatomical and behavioral analysis, Brain Res., 417, 85–98.Google Scholar
  79. 79.
    Labbe, R., Firl Jr., A., Mufson, E.J., and Stein, D.G., 1983, Fetal rat brain transplants: Reduction of cognitive deficits in rats with frontal cortex lesions, Science, 221, 470–472.Google Scholar
  80. 80.
    Lee, H.J., Hammond, D.N., Large, T.H., Roback, J.D., Sim, J.A, Brown, D.A., Otten, U.H., and Wainer, B.H., 1990, Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice, J. NeuroSci., 10, 1779–1787.Google Scholar
  81. 81.
    Lee, S.M., and Ebner, F.F., 1990, Response characteristics of neocortical graft neurons to host somatosensory input, Prog. Brain Res., 82, 301–308.Google Scholar
  82. 82.
    Le Gros Clark, W.E., 1940, Neuronal differentiation in implanted foetal cortical tissue, J. Neurol. Psychiat., 3, 263–272.Google Scholar
  83. 83.
    Le Roch, K., Riche, D., and Sara, S.J., 1987, Persistence of habituation deficits after neurological recovery from severe thiamine deprivation, Behav. Brain Res., 26, 37–46.Google Scholar
  84. 84.
    LeVere, T.E., and LeVere, N.D., 1985, Transplants to the central nervous system as a therapy for brain pathology, Neurobiol. Aging, 6, 151–152.Google Scholar
  85. 85.
    Lishman, W.A., 1986, Alcoholic dementia: a hypothesis, Lancet, 1, 1184–1186.Google Scholar
  86. 86.
    Low, W.C., Lewis, P.R, Bunch, S.T., Dunnett, S.B., Thomas, S.R, Iversen, S.D., Björklund, A., and Stenevi, U., 1982, Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampallesions, Nature, 300, 260–262.Google Scholar
  87. 87.
    Lund, R.D., and Hauschka, S.D., 1976, Transplanted neural tissue develops connections with host rat brain, Science, 193, 582–584.Google Scholar
  88. 88.
    Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J.J., 1987, Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease, New Eng. J. Med., 316, 831–836.Google Scholar
  89. 89.
    Marsden, K.M., 1992, “Transplantation of neuroblastoma cell lines: a behavioural and histological analysis”, PhD Thesis, University of London.Google Scholar
  90. 90.
    Marsden, K.M., Kershaw, T.R, Sinden, J.D., and Lantos, P.L., 1991, Survival and distribution of transplanted human IMR-32 neuroblastoma cells, Brain Res., 568, 76–84.Google Scholar
  91. 91.
    McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E.M., 1984, Clinical diagnosis of Alzheimer’s disease: report on the NINCDS-ADRA work group under the auspices of Department of Health and Human Services task force on Alzheimer’s disease, Neurology, 34, 939–944.Google Scholar
  92. 92.
    Montoya, C.P., Astell, S., and Dunnett, S.B., 1990, Effects of nigral and striatal grafts on skilled forelimb use in the rat, Prog. Brain Res., 82, 459–466.Google Scholar
  93. 93.
    Morris, R.G., and Kopelman, M.D., 1986, The memory deficits in Alzheimer-type dementia: a review, Q. J. Exper. Psychol., 38a, 575–602.Google Scholar
  94. 94.
    Mudrick, L.A., and Baimbridge, K.G., 1991, Hippocampal neurons transplanted into ischemically lesioned hippocampus: anatomical assessment of survival, maturation and integration, Exp. Brain Res., 86, 233–247.Google Scholar
  95. 95.
    Mufson, E.J., Labbe, R., and Stein, D.G., 1987, Morphological features of embryonic neocortex grafts in adult rats following frontal cortical ablation, Brain Res., 401, 162–167.Google Scholar
  96. 96.
    Muller, H.W., and Seifert, W., 1982, A neurotrophic factor released from primal glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res., 8, 195–204.Google Scholar
  97. 97.
    Nicholas, M.K., and Amason, B.G.W., 1989, Immunological considerations in transplantation to the central nervous system, in Neural Regeneration and Transplantation, Seil, F.J., ed., pp. 239–284, Alan R. Liss, New York.Google Scholar
  98. 98.
    Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S., and Cotman, C.W., 1983, Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity, J. NeuroSci., 3, 2219–2229.Google Scholar
  99. 99.
    Nilsson, O.G., Kalen, P., Rosengren, E., and Björklund, A., 1990, Acetylcholine release from intrahippocampal septal grafts is under control of the host brain, Proc. Nat. Acad. Sci. USA, 87, 2647–2651.Google Scholar
  100. 100.
    Olson, L.A., Seiger, A., Freedman, R., and Hoffer, B., 1980, Chromaffin cells can innervate brain tissue: Evidence from intraocular double grafts, Exper. Neurol., 70, 414–426.Google Scholar
  101. 101.
    Olton, D.S., Becker, J.T., and Handelman, G.E., 1979, Hippocampus, space and memory, Behav. Brain Sci., 2, 315–365.Google Scholar
  102. 102.
    Otto, D., and Unsicker, K., 1990, Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice, J. NeuroSci., 10, 1912–1921.Google Scholar
  103. 103.
    Pearlman, S.H., Levivier, M., Collier, T.J., Sladeck Jr., J.R, and Gash, D.M., 1991, Striatal implants protect the host striatum against quinolinic acid toxicity, Exp. Brain Res., 84, 303–310.Google Scholar
  104. 104.
    Perlow, M.F., Freed, W.F., Hoffer, B.J., Seiger, A., Olson, L., and Wyatt, R.J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science, 204, 643–647.Google Scholar
  105. 105.
    Perry, E.K., Perry, R.H., Blessed, G., and Tomlinson, B.E., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet, I, 189–189.Google Scholar
  106. 106.
    Plunkett, R.J., Bankiewicz, K.S., Cummins, A.C., Miletich, R.S., Schwartz, J.P., and Oldfield, E.H., 1990, Long-term evaluation of hemiparkinsonian monkeys after adrenal autografting or cavitation alone, J. Neurosurg., 73, 918–926.Google Scholar
  107. 107.
    Price, D.L., 1986, New perspectives on Alzheimer’s disease, Ann. Rev. NeuroSci., 9, 489–512.Google Scholar
  108. 108.
    Renfranz, P.J., Cunningham, M.G., and McKay, R.D.G., 1991, Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain, Cell, 66, 713–729.Google Scholar
  109. 109.
    Ridley, R.M., and Baker, H.F., 1991, Can fetal transplants restore function in monkeys with lesion-induced behavioural deficits?, Trends NeuroSci., 14, 366–370.Google Scholar
  110. 110.
    Ridley, R.M., Murray, T.K., Johnson, J.A., and Baker, H.F., 1986, Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: modification by cholinergic drugs, Brain Res., 376, 108–116.Google Scholar
  111. 111.
    Robbins, T.W., Everitt, B.J., Marston, H.M., Wilkinson, J., Jones, G.H., and Page, K.J., 1989, Comparative effects of ibotenic acid-and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes, Behav. Brain Res., 35, 221–241.Google Scholar
  112. 112.
    Robbins, T.W., Everitt, B.J., Ryan, C.N., Marston, H.M., Jones, G.H., and Page, K.J., 1989, Comparative effects of quisqualic and ibotenic acid-induced lesions of the substantia innominata and globus pallidus on the acquisition of a conditional visual discrimination: Differential effects on cholinergic mechanisms, Neuroscience, 28, 337–352.Google Scholar
  113. 113.
    Rosenberg, M.B., Friedmann, T., Robinson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O., and Gage, F.H., 1988, Grafting of genetically modified cells to the damaged brain: restorative effects of NGF expression, Science, 242, 1575–1578.Google Scholar
  114. 114.
    Rosvold, H.E., 1968, The prefrontal cortex and caudate nucleus. A system for effecting correction in response mechanisms, in Mind as a Tissue, C. Rupp, ed., pp. 21–38, Harper & Row, New York.Google Scholar
  115. 115.
    Schmidt-Kastner, R., and Freund, T.F., 1991, Selective vulnerability of the hippocampus in brain ischemia, Neuroscience, 40, 599–636.Google Scholar
  116. 116.
    Siman, R., Card, J.P., Nelson, R.B., and Davis, L.G., 1989, Expression of ß-amyloid precursor protein in reactive astrocytes following neuronal damage, Neuron, 3, 275–285.Google Scholar
  117. 117.
    Sinden, J.D., Allen, Y.S., Rawlins, J.N.P., and Gray, J.A, 1989, The effects of ibotenic acid lesions of the nucleus basalis and cholinergic-rich neural transplants on Win-stay /Lose-shift and Win-shift/Lose-stay performance in the rat, Behav. Brain Res., 36, 229–249.Google Scholar
  118. 118.
    Sloan, D.J., Baker, B.J., Puklavec, M., and Charlton, H.M., 1990, The effect of site of transplantation and histocompatability differences on the survival of neural tissue transplanted to the CNS of defined inbred rat strains, Prog. Brain Res., 82, 141–152.Google Scholar
  119. 119.
    Sloan, D.J., Wood, M.J., and Charlton, H.M., 1991, The immune response to intracerebral neural grafts, Trends NeuroSci., 14, 341–346.Google Scholar
  120. 120.
    Smith, G., 1988, Animal models of Alzheimer’s disease: experimental cholinergic denervation, Brain Res. Rev., 13, 103–118.Google Scholar
  121. 121.
    Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A, and Cepko, C.L., 1992, Multipotent neural cell lines can engraft and participate in development of mouse cerebellum, Cell, 68, 33–51.Google Scholar
  122. 122.
    Sofreniew, M.V., Dunnett, S.B., and Isacson, O., 1990, Remodelling of intrinsic and afferent systems in neocortex with cortical transplants, Prog. Brain Res., 82, 313–320.Google Scholar
  123. 123.
    Sorenson, J.C., Wanner-Olsen, H., Tonder, N., Danielsen, E., Castro, A.J., and Zimmer, J., 1990, Axotomized, adult basal forebrain neurons can innervate fetal frontal cortex grafts: a double fluorescent tracer study in the rat, Exp. Brain Res., 81, 545–551.Google Scholar
  124. 124.
    Sotelo, C., and Alvarado-Mallart, R.M., 1987, Reconstruction of the defective cerebellar circuitry in adult purkinje cell degeneration mutant mice by purkinje cell replacement through transplantation of solid embryonic implants, NeuroSci., 20, 1–22.Google Scholar
  125. 125.
    Sotelo, C., and Alvarado-Mallart, R.M., 1991, The reconstruction of cerebellar circuits, Trends NeuroSci., 14, 350–355.Google Scholar
  126. 126.
    Sprick, U., 1991, Transient and long-lasting beneficial behavioral effects of grafts in the damaged hippocampus of rat, Behav. Brain Res., 42, 187–199.Google Scholar
  127. 127.
    Stein, D.G., Labbe, R., Attella, M.J., and Rakowsky, H.A., 1985, Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex, Behav. Neural Biol., 44, 266–277.Google Scholar
  128. 128.
    Stenevi, U., Björklund, A., and Svengaard, N.A, 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival, Brain Res., 114, 1–20.Google Scholar
  129. 129.
    Stromberg, I., Hultgardh-Nilsson, A., Hedin, U., and Ebendal, T., 1988, Fate of intraocular chromaffin cell suspensions: Role of initial nerve growth factor support, Cell Tiss. Res., 254, 487–497.Google Scholar
  130. 130.
    Stromberg, I., Van Horne, C., Bygdeman, M., Weiner, N., and Gerhardt, G.A., 1991, Function of intraventricular human mesencephalic xenografts in immunosuppressed rats: an electrophysiological and neurochemical analysis, Exper. Neurol., 112, 140–152.Google Scholar
  131. 131.
    Thal, L.J., Mandel, R.J., Terry, R.D., Buzsaki, G., and Gage, F.H., 1990, Nucleus basalis lesions fail to induce senile plaques in the rat, Exper. Neurol., 108, 88–90.Google Scholar
  132. 132.
    Thoenen, H., 1991, The changing scene of neurotrophic factors, Trends NeuroSci., 14, 165–170.Google Scholar
  133. 133.
    Thompson, W.G., 1980, Successful brain grafting, N.Y. Med. J., 51, 701–702.Google Scholar
  134. 134.
    Tomlinson, B.E., Blessed, G., and Roth, M., 1970, Observations on the brains of demented old people, J. NeuroL Sci., 11, 205–242.Google Scholar
  135. 135.
    Tonder, N., Sorensen, T., and Zimmer, J., 1989, Enhanced host perforant path innervation of neonatal dentate tissue after grafting to axon sparing, ibotenic acid lesions in adult rats, Exp. Brain Res., 75, 483–496.Google Scholar
  136. 136.
    Ungerstedt, U., 1971, Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., Suppl 367, 95–122.Google Scholar
  137. 137.
    Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., Suppl 367, 69–93.Google Scholar
  138. 138.
    Ungerstedt, U., 1971, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour, Acta Physiol. Scand., Suppl 367, 49–68.Google Scholar
  139. 139.
    Varon, S., Hagg, T., and Manthorpe, M., 1989, Neuronal growth factors, in: Neural Regeneration and Transplantation, F.J. Seil, ed., pp. 101–121, Alan R. Liss, New York.Google Scholar
  140. 140.
    Victor, M., Adams, R.D., and Collins, G.H., 1971, The Wemicke-Korsakoff Syndrome, F.A. Davis, Philadelphia.Google Scholar
  141. 141.
    Wets, K.M., Sinden, J., Hodges, H., Allen, Y., and Marchbanks, R.M., 1991, Specific brain protein changes correlated with behaviourally effective brain transplants, J. Neurochem., 57, 1661–1670.Google Scholar
  142. 142.
    Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 215, 1237–1239.Google Scholar
  143. 143.
    Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O., and Bjürklund, A., 1990, Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts, Nature, 347, 556–558.Google Scholar
  144. 144.
    Wictorin, K., Clarke, D.J., Bolam, J.P., and Björklund, A., 1989, Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum, Eur. J. NeuroSci., 1, 189–195.Google Scholar
  145. 145.
    Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Björklund, A, 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. I. Subcortical afferents, NeuroSci., 27, 547–562.Google Scholar
  146. 146.
    Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Björklund, A., 1989, Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. III. Efferent projecting graft neurons and their relation to host afferents within the grafts, NeuroSci., 30, 313–330.Google Scholar
  147. 147.
    Widner, H., and Brundin, P., 1988, Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis, Brain Res. Rev., 13,287–324.Google Scholar
  148. 148.
    Will, B., Cassel, J.C., and Kelche, C., 1989, Deleterious and “overshoot” effects of intracerebral transplants, in: Neuronal Grafting and Alzheimer’s Disease, F. Gage, A. Privat, and Y. Christen, eds., pp. 189–198, Springer-Verlag, Berlin.Google Scholar
  149. 149.
    Woodruff, M.L., Baisden, R.H., and Nonneman, A.J., 1990, Transplantation of fetal hippocampus may prevent or produce behavioral recovery from hippocampal ablation and recovery persists after removal of the transplant, Prog. Brain Res., 82, 367–376.Google Scholar
  150. 150.
    Woodruff, M.L., Baisden, R.H., Whittington, D.L., and Benson, A.E., 1987, Embryonic hippocampal grafts ameliorate the deficit in DRL acquisition produced by hippocampectomy, Brain Res., 408, 7–117.Google Scholar
  151. 151.
    Xavier, G.F., Kershaw, T.R, Gray, J.A, and Sinden, J.D., 1991, Foetal dentate and CAl subfield transplants and spatial orientation following colchicine lesions of the dentate gyrus, Eur. J. NeuroSci., 4, 103–103.Google Scholar
  152. 152.
    Yamaguchi, F., Richards, S.J., Beyreuther, K, Salbaum, M., Carlson, G.A., and Dunnett, S.B., 1991, Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory, Neuroreporl, 2, 781–784.Google Scholar
  153. 153.
    Yoshida, K., and Gage, F.H., 1991, Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes, Brain Res., 538, 118–126.Google Scholar
  154. 154.
    Zhou, C.F., Li, Y., and Raisman, G., 1989, Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of adult mouse hippocampi, as demonstrated by the use of Thy-1 allelic immunohistochemistry. Effect of timing of transplantation in relation to deafferentation, NeuroSci., 32, 349–362.Google Scholar
  155. 155.
    Zhou, F.C., Raisman, G., and Morris, R.J., 1985, Specific patterns of fibre outgrowth from transplants to host mice hippocampi, shown immunohistochemically by the use of allelic forms of THY-1, NeuroSci., 16, 819–833.Google Scholar
  156. 156.
    Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1986, Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CAl of the hippocampus, J. NeuroSci., 6, 2950–2967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John D. Sinden
    • 1
  • Kathryn M. Marsden
    • 1
  • Helen Hodges
    • 1
  1. 1.Department of Psychology, Institute of PsychiatryLondonEngland

Personalised recommendations