Skip to main content

Myocardial Augmentation Using Skeletal Muscle

  • Chapter
Book cover Cardiac Surgery

Abstract

The development of intractable congestive heart failure occurs in nearly 400,000 people annually, 1.2 and has a 35% one year mortality.3 An estimated 35,000 people per year could benefit from cardiac transplantation, yet less than 2000 donor hearts are available annually.4 In the remaining 33,000 patients there is a 50% one year mortality rate.5 For these patients, the alternative is an artificial heart, an intra-aortic balloon pump, or different variations of ventricular assist devices, however at this point these devices are temporary. Furthermore, they require percutaneous tubes or wires for transmission of energy from an external power source. Although experiments with a totally implantable assist device are planned for 1992, 6 problems with coagulopathy, strokes and infection still need to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.B. Hill, R.C.-J. Chiu. Dynamic cardiomyoplasty for treatment of heart failure. Clin Cardiol 12:681–688;1989.

    Article  PubMed  CAS  Google Scholar 

  2. S.L. Voytik, C.F. Babbs, S.F. Badylak. Simple electrical model of the circulation of explore design parameters for a skeletal muscle ventricle. J Heart Trans 9:160–174;1990.

    CAS  Google Scholar 

  3. A.C.P. Chagas, L.F.P. Moreira, G.P. Camarano, P.L. da Luz, A. Leirner, N.A.G. Stolf, A.D. Jatene. Stimulated preconditioned skeletal muscle cardiomyoplasty: an effective means of cardiac assist. Circulation 80:111–202–208; 1989.

    Google Scholar 

  4. W.J. Kolff. The artificial heart, the inevitable development: will it be the U.S., or abroad? Artij Organs 13:183–184;1989.

    Article  CAS  Google Scholar 

  5. J.A Franciosa, M. Wilen, S. Zieseke, et al: Survival in men with severe chronic left ventricular failure due to either coronary artery or idiopathic dilated cardiomyopathy. AmJ of Cardio 51:831;1983.

    Article  CAS  Google Scholar 

  6. P.M. McCarthy, P.M. Portner, H.G. Toble, V.A. Starnes, N. Ramasamy, P.E. Oyer. Clinical experience with the Novacor ventricular assist system. J Thorac Cardiovasc Surg 102:578–587;1991.

    PubMed  CAS  Google Scholar 

  7. L. Molteni, H.E. Almada, C. de Palma and R. Ferreira. Dynamic cardiomyoplasty: Clinical experience. In: Transformed Muscle for Cardiac Assist and Repair, Edited by R.C-Y Chiu, Bourgeois, I.M., Mount Kisco, Futura Publishing Co.lnc.;1989.

    Google Scholar 

  8. A.D. Jatene, L.F.P. Moreira, N.A.G. Stolf, E.A. Bocchi, P. Seferian, Jr., P.M.P. Fernandes, H. Abensur: Left ventricular function changes after cardiomyoplasty in patients with dilated cardiomyopathy. J Thorac Cardiovase Surg 102:132–139;1991.

    CAS  Google Scholar 

  9. L.F.P. Moreira and A.D. Jatene. Cardiomyoplasty in dilated cardiomyopathy. In: Cardiomyoplasty edited by Carpentier, A, Chachques, J.C. and Grandjean, P., Mount Kisco, Futura Publishing Co.Inc., p.171–179:1991.

    Google Scholar 

  10. A Carpentier, J.C. Chachques. Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet 1:1267;1985.

    Article  PubMed  CAS  Google Scholar 

  11. J.C. Chachques, P.A Grandjean, A. Carpentier. Patient management and clinical follow-up after cardiomyoplasty. J Card Surg 6:89–99;1991.

    PubMed  CAS  Google Scholar 

  12. G.J. Magovem, S.B. Park, R.L. Kao, I.Y. Christlieb, G.J. Magovem, Jr: Dynamic cardiomyoplasty in patients. J Heart Trans 9:258–263;1990.

    Google Scholar 

  13. G.J. Magovem, I.Y. Christlieb, R.L. Kao. The Allegheny hospital experience. In: Cardiomyoplasty edited by A. Carpentier, J.C. Chachques, and P. Grandjean, Mount Kisco, Futura Publishing Co.Inc, p.159–170;1991.

    Google Scholar 

  14. A.S. Dumcius, E.K. Sirvinskas, J. Skucas, K.M. Salcius, A.A. Krakovsky, S.J. Giedraitis, V.S. Chekanov. A method of extended myoventriculoplasty with programmable cardiosynchronized electroneurostimulation: description and initial clinical results. Cora Vasa 31(5):394–401;1989.

    CAS  Google Scholar 

  15. A.A Krakovsky, V.V. Pekarsky, A.S. Dumcius, V.I. Merzlijakov, D.B. Andreev, AM. Dijadurko, V.V. Piluiko, L.G. Rijabinia, R. Fietsam,Jr., I.A. Dubrovsky, A.N. Rijich, V.S. Chekanov. Latissimus dorSi cardiomyoplasty: the Russian experimental and clinical data. J Heart Trans submitted;1991.

    Google Scholar 

  16. F.W. Mocek, D.R. Anderson, A. Pochettino, R.L. Hammond, A.D. Spanta, G.L. Thomas, H. Lu, R. Fietsam, Jr., H Nakajima, A. Krakovsky, T.L. Hooper, H. Niinami, M. Colson, S. Levine, L.W. Stephenson. Skeletal Muscle Ventricles in Circulation Long-Term: 191 to 836 Days. J Heart Transplant 1991.(In Press)

    Google Scholar 

  17. F.R. de Jesus. Breve consideraciones sobre un case de herida penetrante del corazon. Bol Assoc Med Puerto Rcio 23:380–382; 1931.

    Google Scholar 

  18. R. Leriche. Essal experimental de traltement de certains mfarctus du myocarde et de l’aneurisme de coeur par une graffe muscle strie. Bull Soc Nat Chir 9:229–232;1933.

    Google Scholar 

  19. C.S. Beck. A new blood supply to the heart by operation. Surg Gynecol Obstet 61:407–410; 1935.

    Google Scholar 

  20. C.S. Beck. The development of a new blood supply to the heart by operation. Ann Surg 102:801–810;1935.

    Article  PubMed  CAS  Google Scholar 

  21. L. O’Shaughnessy. Experimental method of providing a collateral circulation to the heart. Brit J Surg 23:665;1936.

    Article  Google Scholar 

  22. C.S. Beck. Further data on the establishment of a new blood supply to the heart by operation. J Thorac Surg 5:604–611;1936.

    Google Scholar 

  23. C.S. Beck. Coronary sclerosis and angina pectoris: Treatment by grafting a new blood supply upon the myocardium. Surg Gynecol Obstet 64:270–272; 1937.

    Google Scholar 

  24. B.V. Petrovsky. The use of diaphragmatic flaps for plastic purpose in thoracic surgery. Chest Surgery (Moscow) 51:73–80;1959.

    Google Scholar 

  25. B.V. Petrovsky. Certain problems of surgical treatment in cardiac aneurysms. Surgery (Moscow) 4:11–39;1959.

    Google Scholar 

  26. B.V. Petrovsky. Surgical treatment of cardiac aneurysms following myocardial infarction. Surgery (Moscow) 9:11–20;1960.

    Google Scholar 

  27. B.V. Petrovsky. The use of the diaphragm graft for plastic operations in thoracic surgery. J Thorac Cardiovasc Surg 41:348–355;1961.

    PubMed  CAS  Google Scholar 

  28. B.V. Petrovsky. The surgical treatment of cardiac aneurysms. Surgery (Moscow) 2:5–14;1963.

    Google Scholar 

  29. B.V. Petrovsky. Surgical treatment of cardiac aneurysms. J Cardiovasc Surg 2:87–91;1966.

    Google Scholar 

  30. M.D. Papp. Experimental use of intercostal muscle flaps for repair of induced cardiac defects. J Thomc Cardiovasc Surg 90:261;1985.

    CAS  Google Scholar 

  31. H.V. Schaff, P.G. Arnold, G.S. Reeder. Late mediastinal infection and pseudo aneurysm following left ventricular aneurysmectomy repair utilizing pectoralis major muscle flap. J Thomc Cardiovasc Surg 84:912–916;1982.

    CAS  Google Scholar 

  32. A. Kantrowitz, W. McKinnon. The experimental use of the diaphragm as an auxiliary myocardium. Surg Forum 9:266–268;1959.

    Google Scholar 

  33. A. Kantrowitz. Functioning autogenous muscle used experimentally as an auxiliary ventricle. Trans Am Soc Artif Intern Organs 68:305–307; 1960.

    Google Scholar 

  34. E. Kusaba, W. Schraut, S. Sawatani. A diaphragmatic graft for augmenting left ventricular function: a feaSibility study. Trans Am Soc Artfj Intern Organs 19:251–257;1973.

    Article  CAS  Google Scholar 

  35. K. Nakamura, W.W.L. Glenn. Graft of the diaphragm as a functioning substitute for the myocardium. J Surg Res 4:435–439;1964.

    Article  PubMed  CAS  Google Scholar 

  36. M.L. Dewar, D.C. Drinkwater, C. Wittnich, R.C.-J. Chiu. Synchronously stimulated skeletal muscle graft for myocardial repair. J Thomc Cardiovasc Surg 87:325–331;1984.

    CAS  Google Scholar 

  37. H. Termet, J.L. Chalencon, E. Estour, et al. Transplantation sur Ie myocarde d’un muscle strie excite pace maker. Ann Chir Thorac Cardiovasc 5:568;1966.

    Google Scholar 

  38. W.I. Hume. Construction of a functioning accessory myocardium. Trans Southern Surg Assoc 79:200–202;1968.

    Google Scholar 

  39. H.M. Spotnitz, C. Merker, J.R. Malm. Applied physiology of the canine rectus abdominis: Force-length curves correlated with functional characteristics of a rectus powered “ventricle”: Potential for cardiac assistance. Trans Am Soc ArtfjIntem Organs 20:747–756;1974.

    Google Scholar 

  40. A. von Recum, J.P. Stule, O. Hamada, et al: Long-term stimulation of diaphragm muscle pouch. J Surg Res 23:422–427;1977.

    Article  Google Scholar 

  41. F.R. Adams and A. Schwartz. Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest 78:123–139;1980.

    PubMed  CAS  Google Scholar 

  42. M.A. Acker, R.L. Hammond, J.D. Mannion, S. Salmons, L.W. Stephenson. An Autologous Biologic Pump Motor. J Thorac Cardiovasc Surg 94:733–746;1986.

    Google Scholar 

  43. M.A. cker, W.A. Anderson, R.L. Hammond, A.J. Chin, J.W. Buchanan, C.C. Morse, A.M. Kelly, L.W. Stephenson. Skeletal muscle ventricles in Circulation: one to eleven weeks’ experience. J Thorac Cardiovasc Surg 94:163–174;1987.

    Google Scholar 

  44. M.A. Acker, R.L. Hammond, J.D. Mannion, S. Salmons, L.W. Stephenson. Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324-327;1987.

    Google Scholar 

  45. M.L. Dewar, RC.-J. Chiu. Cardiomyoplasty and the pulse-train stimulator. In: Biomechanical Cardiac Assist: Cardiomyoplasty and Muscle-powered Devices edited by RC-J Chiu, New York: Futura, p. 43–58;1986.

    Google Scholar 

  46. J.D. Mannion, RL. Hammond, M.A. Acker, L.W. Stephenson. Four hour circulatory assistance with canine skeletal muscle ventricles. Surg Forum 37:211–213;1986.

    Google Scholar 

  47. J. Mannion, RL. Hammond, L.W. Stephenson. Hydraulic pouches of canine latissimus dorsi: Potential for left ventricular assistance. J Thorac Cardiovasc Surg 91:534–544;1986.

    PubMed  CAS  Google Scholar 

  48. B.R. Vachon, J. Kunov, W. Zingg: Mechanical properties of diaphragm muscle in dogs. Med Biol Eng 13:252–260;1975.

    Article  PubMed  CAS  Google Scholar 

  49. J.C. Buller, J.C. Eccles, RM. Eccles. Differentiation of fast and slow muscles in the cat hind limb. J Physiol 150:399–416; 1960.

    PubMed  CAS  Google Scholar 

  50. J.C. Buller, J.C. Eccles, R.M. Eccles. Interactions between motor neurons and muscles in respect of the characteristic speeds of their responses. J Physiol 150:417–439;1960.

    PubMed  CAS  Google Scholar 

  51. S. Salmons, G. Vrbova. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 210:535–549;1969.

    Google Scholar 

  52. S. Salmons, F.A. Sreter. Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34;1976.

    Article  PubMed  CAS  Google Scholar 

  53. M.M.Y. Chi, C.S. Hintz, J. Henriksson, et al. Chronic stimulation of mammalian muscle: Enzyme changes in individual fibers. J Physiol 251:C633–C642;1986.

    CAS  Google Scholar 

  54. D. Pette. Activity-induced fast to slow transitions in mammalian muscle. Med Sci Sports Exerc 16:517–528;1984.

    PubMed  CAS  Google Scholar 

  55. S. Salmons, J. Henriksson. The adaptive response of skeletal muscle to increased use. Muscle Nerve 4:94;1981.

    Article  PubMed  CAS  Google Scholar 

  56. P. Schantz, R Billeter, J. Henriksson, E. Jansson. Training-induced increase in myofibrillar ATPase intermediate fibers in human skeletal muscle. Muscle Nerve October:628–636;1982.

    Google Scholar 

  57. B.R Eisenberg, S. Salmons. The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res 220:449;1981.

    Article  PubMed  CAS  Google Scholar 

  58. D. Pette, W. Muller, E. Leisner, G. Vrbova. Time dependent effects on contractile properties, fibre population, myosin light change and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscle of the rabbit. Pfluegers Arch 364:103;1976.

    Article  CAS  Google Scholar 

  59. L.C. Permut, I.L. Siegman, J.A. Swain, R.E. Clark. Hemodynamic effects of chronically stimulated skeletal muscle on the dysfunctional canine left ventricle. Surg Forum 39:278–280;1988.

    Google Scholar 

  60. C.D. Ianuzzo, N. Hamilton, P.J. O’Brien, T. Dionisopoulos, T. Salerno, R.C.-J. Chiu. Biochemical character of cardiac and transformed canine skeletal muscle. In: Transformed Musclefor Cardiac Assist and Repair, edited by R.C.-Y Chiu and Bourgeois, I.M. Mount Kisco, Futura Publishing Co.Inc.;1989.

    Google Scholar 

  61. O. Hudlicka, M. Brown, M. Cotter, M. Smith, G. Vrbova. The effect of long-term stimulation of fast muscle on their blood flow. Pfluegers Arch 369:141–149;1977.

    Article  CAS  Google Scholar 

  62. C.N. Mayne, W.A. Anderson, RL. Hammond, B.R Eisenberg, L.W. Stephenson, S. Salmons. Correlates of fatigue resistance in canine skeletal muscle stimulated electrically for up to one year. Am J Phystol 261(2 pt 1):C259–C270;1991.

    CAS  Google Scholar 

  63. R.C.-J. Chiu, G. Kochamba, G. Walsh, M. Dewar, C. Dewrosiers, T. Dionisopoulos, P. Brady, C.D. Ianuzzo. Biochemical and functional correlates of myocardium-like transformed skeletal muscle as a power source for cardiac assist devices. J Card Surg 4(2):171;1989.

    Article  PubMed  CAS  Google Scholar 

  64. M.J. Dawson, D.G. Gadian, D.R Wilkie. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. J Physiol Land 299:465–484;1980.

    CAS  Google Scholar 

  65. E. Leberer, U. Seedorf, D. Pette. Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem J 239:295–300;1986.

    PubMed  CAS  Google Scholar 

  66. M.A. Acker, W.A. Anderson, RL. Hammond et al. Oxygen consumption of fatigue-resistant muscle. J Thorac Cardiovasc Surg 94:702–709;1987.

    PubMed  CAS  Google Scholar 

  67. B.J. Clark, M.A. Acker, K. McCully, H. Subramanian, RL. Hammond, S. Salmons, B. Chance, L.W. Stephenson. In vivo P-NMR spectroscopy of chronically stimulated canine skeletal muscle. Am J Physiol 254:C258–C266;1988.

    PubMed  CAS  Google Scholar 

  68. F.R Armenti, T. Bitto, J.A. Macoviak, A.M. Kelly, C.T. Chase, B.K. Hoffman, N.A. Rubenstein, M. St.John-Sutton, L.H. Edmunds,Jr., L.W. Stephenson. Transformation of Canine Diaphragm to fatigue-Resistant Muscle by Phrenic Nerve Stimulation. Surg Forum 35:258–269; 1984.

    Google Scholar 

  69. J.A. Macoviak, L.W. Stephenson, A. Alavi, A.M. Kelly, L.H. Edmunds, Jr. Effect of Electrical Stimulation on Diaphragmatic Muscle used to Enlarge Right Ventricle. Surgery 90:271–277;1981.

    PubMed  CAS  Google Scholar 

  70. J.A. Macoviak, L.W. Stephenson, F. Armenti, A.M. Kelly, A. Alavi, T. Mackler, J. Cox, G.M. Palatianos, L.H. Edmunds,Jr., Electrical Conditioning of in situ Skeletal Muscle for Replacement of Myocardium. J Surg Res. 32:429–439;1982.

    Article  PubMed  CAS  Google Scholar 

  71. J.D. Mannion, T. BItto, RL. Hammond, N. Rubinstein, L.W. Stephenson. Histochemical and Fatigue Characteristics of Conditioned Latissimus Dorsi Muscle. Circ Res 58:298–30;1986.

    Article  PubMed  CAS  Google Scholar 

  72. E. Hohenhaus, W.A. Anderson, A. Pochettlno, D.R Anderson, H. Niinami, A.D. Spanta, RL. Hammond, C.R Bridges,Jr., L.W. Stephenson. Skeletal Muscle for Cardiac Assistance. In: Cardiac Surgery: State of the Art Reviews Vol 4, No 3, Hanley & Belfus, Inc. p 677–702;1990.

    Google Scholar 

  73. B.K. Hoffman, B. Gambke, L.W. Stephenson, N.A. Rubenste In. Myosin transitions in chroniC stimulation do not Involve embryonic isozymes. Muscle Nerve 8:796–805;1985.

    Article  PubMed  CAS  Google Scholar 

  74. J.C. Chachques, V. Mitz, M. Hero, P. Arhan, P. Galliz, F. Fontrliran, R. Vilain. Experimental cardioplasty using the Latissimus Dorsi muscle flap. J Cardiovasc Surg 26:457–462;1985.

    CAS  Google Scholar 

  75. J.E. Christ, M. Spira. Application of the latissimus dorsi muscle to the heart. Ann Plast Surg 8:118–121;1982.

    Article  PubMed  CAS  Google Scholar 

  76. J.K.G. Laitung, F. Peck. Shoulder function following loss of the latissimus dorsi muscle. Br J Plastic Surg 38:375–379;1985.

    Article  CAS  Google Scholar 

  77. S. Salmons, J.C. Jarvis. The working capacity of skeletal muscle transformed for use in a cardiac assist role. In: Transformed skeletal muscle for cardiac assist and repair, edited by R.C-Y Chiu, I.M. Bourgeois, Mount Kisco, NY: Futura Publishing Company Inc., p.89–104;1990.

    Google Scholar 

  78. J.D. Mannion, M. Velchick, M.A. Acker, RL. Hammond, A. Alavi, L.W. Stephenson. Transmural Blood Flow to Multi-layered Latissimus Dorsi Skeletal Muscle Ventricles During Circulatory Assistance. Trans. Amer.Soc. Artiflntern Organs 32:454–460;1986.

    Article  CAS  Google Scholar 

  79. J.D. Mannion, M. Velchick, R.L. Hammond et al. Effects of collateral blood vessel ligation and electrical conditioning on blood flow in dog latissimus dorsi. J Surg Res 47:332–340;1989.

    Article  PubMed  CAS  Google Scholar 

  80. J.C. Chachques, P.A. GrandJean, K. Schwartz, S. Mihaileanu, M. Fardeau, B. Swynghedauw, F. Fontaliran, N. Romero, C. Wlsnewsky, P. Perler, S. Chauvaud, I.M. Bourgeois, A. Carpentier. Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function. Circulation 78(Suppl III):III–203–III–216;1988.

    Google Scholar 

  81. J.C. Chachques, P.A. GrandJean, P. Nataf, S. Mihaileanu, P. Perler, I.M. BourgeoiS, A. Carpentier. Dynamic cardiomyoplasty: a surgical approach for ventricular assistance. IntJ Artiforgan 11:469–474;1988.

    CAS  Google Scholar 

  82. J.C. Chachques, P.A. Grand Jean, J.J. Tommasi, P. Perler, S. Chauvaud, I.M. Bourgeois, A. Carpentier. Dynamic Cardlomyoplasty: A new approach to assist chrOniC myocardial failure. Life Support Systems 5:323–327;1987.

    PubMed  CAS  Google Scholar 

  83. M.S. Soberman, I.L Wornom, III., A.G. Justlcz, J.J. Coleman, III, G.E. Austin, N.P. Alazraki and J.D. Sink. Latissimus dorsi dynamic cardiomyoplasty of the right ventricle. J Thome Cardiovasc Surg 99:817–827;1990.

    CAS  Google Scholar 

  84. W.A. Anderson, J.S. Andersen, M.A. Acker, R.L. Hammond, A.J. Chin, P.S. Douglas, A. Kha1afa11a, S. Salmons and L.W. Stephenson. Skeletal Muscle AppUed to the Heart: A Word of Caution. Circulation 78(III):180–190;1988.

    Google Scholar 

  85. H. Takemura, G. Watanabe, N. Sakakibara et al. Ventricular assistance by right free wall dynamic cardiomyoplasty following acute right heart failure in canines. J Card Surg 6:132;1991.

    PubMed  CAS  Google Scholar 

  86. K.F. Lee, R.J. Dignan, J.M. Parmar, C.M. Dyke, G. Brenton, J Yeh,Jr., A.S. Abd-Elfattah, A.S. Wechsler. Effects of dynamic cardiomyoplasty of left ventricular performance and myocardial mechanics in dilated cardiomyopathy. J Thorac Cardiovasc Surg 102:124–131;1991.

    PubMed  CAS  Google Scholar 

  87. H. Sandler, H.T. Dodge. Left ventricular tension and stress in man. Circ.Res. 13:91–104;1963.

    Article  PubMed  CAS  Google Scholar 

  88. R. Danesi, M.D. Tacca, N. Bernardini, G. Cardini, O. Bellini. Evaluation of the JT and corrected JT intervals as a new ECG method for monitoring doxorubicin cardiotoxicity in the dog. J Pharm Methods 21:317–327;1989.

    Article  CAS  Google Scholar 

  89. E.H. Herman, V.J. Ferrans, R.S.K. Young, R.L. Hamlin. Effect of pretreatment with ICRF-187 on the total cumulative dose of doxorubicin tolerated by beagle dogs. Cancer Res 48:6918–6925;1988.

    PubMed  CAS  Google Scholar 

  90. R.W.J. Millner, J.M. Mann, I. Pearson, J.R. Pepper. Experimental model of left ventricular failure. Ann Thome Surg 52:78;1991.

    Article  CAS  Google Scholar 

  91. R.L. Kao, I.Y. Christlieb, G.J. Magovern, S.B. Park, G.J. Magovern,Jr.: The Importance of skeletal muscle fiber orientation for dynamic cardiomyoplasty. J Thorac Cardiovasc Surg 99:134–140; 1990.

    PubMed  CAS  Google Scholar 

  92. G.J. Magovern, S.B. Park, G.J. Magovern,Jr., D.H. Benckart, G. Tullis, E. Rozar, R.L. Kao, I.Y. Christlieb. Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann Thome Surg 41:116;1986.

    Article  CAS  Google Scholar 

  93. A.A. Hagege, M. Desnos, J.C. Chachques et al. PreUminary report: follow-up after dynamic cardiomyoplasty. Lancet 335:1122; 1990.

    Article  PubMed  CAS  Google Scholar 

  94. J.C. Chachques, P.A. GrandJean, T.A. Pfeffer, P. Perler, G. Dreyfus, V. Jebara, C. Acar, M. Levy, I.M. Bourgeois, J-N. Fabiani, A. Deloche, A. Carpentier. Cardiac assistance by atrial or ventricular cardlomyoplasty. J Heart Trans 9:239–251;1990.

    CAS  Google Scholar 

  95. F. Delahaye, O. Jegaden, P. Montagna et al. Latissimus dorsi cardiomyoplasty in severe congestive heart failure: the Lyon experience. Circulation 82(SuppllII):713;1990.

    Google Scholar 

  96. G.J. Magovern, F.R. Heckler, S.B. Park, I.Y. Chrisllieb, G.J. Magovern,Jr., R.L. Kao, D.H. Benckart, G. Tullis, E. Rozar, G.A. Liebler, J. Burkholder, T.D. Maher. Paced latissimus dorsi used for dynamic cardlomyoplasty of left ventricular aneurysms. Ann Thome Swy 44:379–388;1987.

    Article  CAS  Google Scholar 

  97. G.J. Magovern, F.R. Heckler, S.B. Park, I.Y. Christlleb, G.A. Uebler, J.A. Burkholder, T.D. Maher, D.H. Benckart, G.J. Magovern,Jr., R.L. Kao. Paced skeletal muscle for dynamic cardiomyoplasty. Ann Thome Surg 45:614–619;1988.

    Article  CAS  Google Scholar 

  98. L.F.P. Moreira, P. Seferian, E.A. Bocchi, P.M.P. Fernandes, N.A.G. Stolf, A.C.P. Barreto, A.D. Jatene. Survival improvement with dynamic cardiomyoplasty in patients with dilated cardiomyopathy. Circulation 82 (Suppl III):713;1990.

    Google Scholar 

  99. K.F. Lee, C.M. Dyke, RJ. Dignan, G.S. Benton, A.S. Wechsler. Mechanism of systolic augmentation in dynamic cardiomyoplasty. Surg Forum 42:310–311;1991.

    Google Scholar 

  100. S. Salmons, J.C. Jarvis. Cardiomyoplasty: the basic issues. Cardiac Chronicle 4(2):1–6;1990.

    Google Scholar 

  101. A.P. Furnary, J.A Magovern, I.Y. Christlieb, D.R Trumble. Improved ventricular augmentation with right latissimus dorsi cardiomyoplasty. Surg Forum 42:307–309;1991.

    Google Scholar 

  102. L. Molteni, H.E. Almada, RF. Ferreira, D. Ortega. Assessment of the optimal time interval between QRS and single-pulse stimulation in dynamic cardiomyoplasty. In: Transformed Musclefor Cardiac Assist and Repair, edited by Chiu, RC-J. and Bourgeois, I.M. Mount Kisco, Futura, p. 189–196;1990.

    Google Scholar 

  103. L.W. Stevenson, J.K. Perloff. The dilated cardiomyopathies: clinical aspects. In: Cardiology Clinics; vol 2: The cardiomyopathies edited by Perloff, J.K. Philadelphia: WB Saunders, p. 187–218;1988.

    Google Scholar 

  104. K.F. Lee, C.M. Dyke, A.S. Wechsler. Theoretical conSiderations in the use of dynamic cardiomyoplasty to treat dilated cardiomyopathy. J Card Surg 6:119–123;1991.

    PubMed  CAS  Google Scholar 

  105. S. Salmons, J.C. Jarvis. Cardiomyoplasty: a look at the fundamentals. In: Cardiomyoplasty, edited by A. Carpentier, J.C. Chachques, P.A Grandjean, Mount Kisco, Futura Publishing CO,Inc. p 3–17;1991.

    Google Scholar 

  106. G.M. Guiraudon, T. Morell, D.R Boughner, D.G. McLellan, AD. Sharma, W.J. Kostuk and C. Guiraudon. Right ventricular free wall dynamiC cardiomyoplasty on a canine chrOniC right ventricular failure model: Primary report. In: Transformed Muscle for Cardiac Assist and Repair, edited by RC-J Chiu, I.M. Bourgeois, Mount Kisco, Futura Publishing Co.Inc.;1989.

    Google Scholar 

  107. J.D. Mannion, M.A. Acker, RL. Hammond, W. Faltemeyer, S. Duckett, L.W. Stephenson. Power Output of Skeletal Muscle Ventricles in Circulation: Short-term studies. Circulation 76:155–162;1987.

    Article  PubMed  CAS  Google Scholar 

  108. L. Stevens and J. Brown. Can non-cardiac muscle provide useful cardiac assistance? Am Surg 52:423–427;1986.

    PubMed  CAS  Google Scholar 

  109. C.R Bridges,Jr., W.E. Brown, RL. Hammond, D.R Anderson, W.A. Anderson, F. DiMeo, L.W. Stephenson. Skeletal Muscle Ventricles: Improved Performance at Physiologic Preloads. Surgery 106:275–282;1989.

    PubMed  Google Scholar 

  110. C.R Bridges,Jr., RL. Hammond, D.R Anderson, L.W. Stephenson. Skeletal Muscle Ventricle MechaniCS: Effects of PaSSive Stretch. In: Cardiomyoplasty, edited by Carpentier, A, Chachques, P.A. and Grandjean, P.A. Mount Kisco, Futura Publishing Co. Inc. p 217–225; 1991.

    Google Scholar 

  111. RL. Hammond, C.R Bridges,Jr., F. DiMeo, L.W. Stephenson. Performance of Skeletal Muscle Ventricles: Effects of Ventricular Chamber Size. J Heart Transplant 9:252–257;1990.

    PubMed  CAS  Google Scholar 

  112. W.A. Anderson, J.S. Andersen, C.R Bridges,Jr., RL. Hammond, F. DiMeo, E.E. Frisch, S. Salmons, L.W. Stephenson. Skeletal Muscle Ventricles as a Potential Right Heart AsSist or Substitute. Trans Amer Soc Artif Intern Organs 34:241–246;1988.

    Article  CAS  Google Scholar 

  113. C.R. Bridges,Jr., RL. Hammond, F. DiMeo, L.W. Stephenson. Functional Right Heart Replacement with Skeletal Muscle Ventricles. Circulation 80 (Suppl III):183–191;1989.

    Google Scholar 

  114. D.R. Anderson, A. Pochettino, R.L. Hammond, E. Hohenhaus, A.D. Spanta. C.R. Bridges,Jr., S. Lavine, M. Colson, L.W. Stephenson. Autogenously Lined Skeletal Muscle Ventricles in Circulation: Up to Nine Months Experience. J Thorac Cardlovasc Surg 101:661–670;1991.

    CAS  Google Scholar 

  115. D.R. Anderson, A. Pochettino, R.L. Hammond, E. Hohenhaus, A.D. Spanta, C.R Bridges.Jr., S. Lavine, M. Colson, L.W. Stephenson. Autogenously Lined Skeletal Muscle Ventricles in Circulation: Up to Nine Months Experience. J Thorac Cardiovasc Surg 101:661–670;1991.

    PubMed  CAS  Google Scholar 

  116. R Ruggiero, D.R. Anderson, H. Niinami, A. Pochettino, T.L. Hooper, R.L. Hammond, S. Lavine, A.D. Spanta, H. Lu, L.W. Stephenson. Skeletal Muscle Ventricles in Circulation: 24-month update. BAM 1991.(In Press)

    Google Scholar 

  117. T.L. Hooper, R.L. Hammond, H. Niinami, H. Lu, H. Nakajima, R Ruggiero, L.W. Stephenson. Aortic Counterpulsation with a Valved Skeletal Muscle Ventricle: Short-term studies of coronary flow and left ventricular functlon. J Thorac Cardiovasc Surg 1991.(In Press)

    Google Scholar 

  118. L.A. Geddes, J.L. Wessale, S.F. Badylak, W. Janas, W.A. Tacker, W.D. Voorhees, III: The use of an electrically actlvated valve to control preload and provide maximal muscle blood flow with a skeletal-muscle ventricle. Pace 13:783–795;1990.

    Article  PubMed  CAS  Google Scholar 

  119. J.C. Chachques, P.A. Grandjean, E.I.C. Fischer, C. Latremouille, V.A. Jebara, I.M. Bourgeois. A Carpentler. Dynamic aortomyoplasty to assist left ventricular failure. Ann Thorac Surg 49:225–230; 1990.

    Article  PubMed  CAS  Google Scholar 

  120. I.R. Neilson, S.J. Brister, A.S. Khalafalla, R.C.-J. Chiu. Left ventricular assistance in dogs using a skeletal muscle powered device for diastoHc augmentation. J Heart Trans 4:343–347;1985.

    CAS  Google Scholar 

  121. H. Niinami, T.L. Hooper, R.L. Hammond, R Ruggiero, A. Pochettlno, M. Colson and L.W. Stephenson. A New Configuratlon for Right Ventricular Assist with Skeletal Muscle Ventricle: Short term studies. Circulation Vol 84: 2470–2475;1991.(In Press)

    Article  PubMed  CAS  Google Scholar 

  122. T.L. Hooper, H. Niinami, R.L. Hammond, H. Lu, R. Ruggiero, A. Pochettlno, L.W. Stephenson. Skeletal Muscle Ventricles as Left Atrial-Aortic Pumps: Short-Term Studies. Ann Thorac Surg 54:316–22;1992.

    Article  PubMed  CAS  Google Scholar 

  123. L. Stevens, S.F. Badylak, W. Janas, M.H. Gray, L.A. Geddes. W.D. Voorhees, III: A skeletal muscle ventricle made from rectus abdominis muscle in the dog. J Surg Res 46:84–89;1989.

    Article  PubMed  CAS  Google Scholar 

  124. M.A. Acker, J.D. Mannion, W.E. Brown, S. Salmons, J. Henriksson, T. Bitto, D.R. Gale, R.L. Hammond and L.W. Stephenson: Canine diaphragm muscle after one year of continuous electrical stimulatlon: its potential as a myocardial substitute. J Appl Physiol 62:1264–1270;1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fietsam, R., Stephenson, L.W. (1992). Myocardial Augmentation Using Skeletal Muscle. In: Cernaianu, A.C., DelRossi, A.J. (eds) Cardiac Surgery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3418-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3418-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6511-2

  • Online ISBN: 978-1-4615-3418-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics