Skip to main content

Treatment Planning and Optimization for Pion Therapy

  • Chapter
Boron Neutron Capture Therapy
  • 68 Accesses

Abstract

The goal of radiotherapy is the deposition of a high dose in the target volume to inactivate every single cell of a tumor without irradiating the normal tissues to a level giving rise to complications. The negative pions as charged particles have favorable properties concerning physical dose distribution. In addition, at the end of the range they undergo a nuclear reaction with target nuclei, liberating neutral and charged secondary particles, some of them with an increased radiobiological efficiency. For these reasons they were considered particularly suited for radiotherapy. To make optimum use of the particles, a new delivery technique was developed to fit the dose distributions in three dimensions to the target volume. With the developed therapy modality it was expected, after a stepwise optimization of the treatment, to reach an increased local control rate with equal or lower complication probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blattmann, H. Type and energy spectra of secondaries from interactions of pions, and relevance to radiotherapy. In: Nuclear and Atomic Data for Radiotherapy and Related Radiobiology. International Atomic Energy Agency, Vienna (1987).

    Google Scholar 

  2. Boyd, D.; Schwettman, H.A.; Simpson, J. A large acceptance pion channel for cancer therapy. Nucl. Instr. Meth. 11, 315–331 (1973).

    Article  Google Scholar 

  3. Kaplan, H.S.; Schwettman, H.A; Fairbank, W.M.; Boyd, D.; Bagshaw, M.A. A hospital-based superconducting accelerator facility for negative pi-meson beam radiotherapy. Radiology 108, 159–172 (1973).

    PubMed  CAS  Google Scholar 

  4. Pistenma, D.A.; Li, C.G.; Bagshaw, M.A. Basic considerations in simulated treatment planning for the Stanford medical pion generator (SMPG). Int. J. Radiat. Oncol. Bioi. Phys. 2, 345–356 (1977).

    Article  CAS  Google Scholar 

  5. Pedroni, E.; Blattmann, H.; Salzmann, M.; Walder, E.; Crawford, J.F.; Dietlicher, R.: Cordt, I.; Schäppi, K.; von Essen, C.F.; Perret, C. Treatment planning and dosimetry for the pi-Meson therapy facility at SIN. Proc. Int. Cont on Application of Physics to Medicine and Biology. G. Alberi; Z. Bajzer, P. Baxa, eds., World Scientific, Singapore, 1–25 (1983).

    Google Scholar 

  6. Muenchmeyer, G.; Amols, H.I.; Büche, G.; Kluge, W.; Matthäy, H. Moline, A.; Randoll, H. Energy spectra of charged particles emitted following the absorption of negative pions stopped within oxygen-containing organic compounds. Phys. Med. Biol. 27, 1131–1149 (1982).

    Article  CAS  Google Scholar 

  7. Scillaci, M.E.; Roeder, D.L. Dose distribution due to neutrons and photons resulting from negative pion capture in tissue. Phys. Med. Biol. 18, 821–829 (1973).

    Article  Google Scholar 

  8. Schuhmacher, H.; Menzel, H.G.; Blattmann, H.; Muth, H. Proportional counter dosimetry and microdosimetry for radiotherapy with multiple pion beams. Radiat. Res. 101, 177–196 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Pohlit, W.; Jüling, L.; Blattmann, H.; Pedroni, E.; Menzel, H.G.; Schuhmacher, H. Dependence ofthe RBE on tumor volume in pion treatment of tumors on the “spot scan” mode. Medical Newsletter SIN 5, 31 (1983).

    Google Scholar 

  10. Raju, M.R. Heavy particle radiotherapy. Academic Press, New York, London, Sydney, Toronto, San Francisco (1980).

    Google Scholar 

  11. Greiner, R; Blattmann, H.; Thurn, P.; Bösiger, P.; Coray, A.; Kann, R.; Lahtinen, T.; Reinhardt, H.; von Essen, C.F.; Zimmermann, A. Anaplastic astrocytoma and glioblastoma: pion irradiation with the dynamic conformation technique at the Swiss Institute for Nuclear Research (SIN). Radiother. Oncol. 17, 37–46 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. Thurn, P.; Greiner, R.; Blattmann, H.; Coray, A.; Zimmermann, A. Pionen-Strahlentherapie nichtresektabler Weichteilsarkome am schweizerischen Institut für Nuklearforschung (SIN). Strahlenther. Onkol. 164, 714–723 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blattmann, H. (1992). Treatment Planning and Optimization for Pion Therapy. In: Gabel, D., Moss, R. (eds) Boron Neutron Capture Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3408-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3408-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6506-8

  • Online ISBN: 978-1-4615-3408-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics