Skip to main content

Modeling of Oxygen Transport to Skeletal Muscle: Blood Flow Distribution, Shunt, and Diffusion

  • Chapter
Oxygen Transport to Tissue XIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 316))

Abstract

The analysis of gas exchange in the lungs has advanced importantly in the last decades. Some generally accepted models have been developed, and they have proved to be useful for understanding gas exchange in normal man and animals, and in particular in patients with pulmonary disease. In this report it will be attempted to apply the models developed for pulmonary gas exchange to analysis of O2 transfer in tissues, with particular reference to skeletal muscle. It will be shown that application of such models is meaningful, enabling us to identify the factors which may be involved in O2 delivery to skeletal muscle and to estimate their role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cerretelli, P., C. Marconi, D. Pendergast, M. Meyer, N. Heisler and J. Piiper, 1984, Blood flow in exercising muscles by xenon clearance and by microsphere trapping, J. Appl. Physiol., 56: 24–30.

    Google Scholar 

  • Gayeski, T.E.J. and C.R. Honig, 1986, O2 gradients from sarcolemma to cell interior in red muscle at maximal Vo2, Am. J. Physiol., 259 (Heart Circ. Physiol. 20): H 789–H799.

    Google Scholar 

  • Gayeski, T.E.J. and C.R. Honig, 1988, Intracellular Po2 in long axis of individual fibers in worlting dog gracilis muscle, Am. J. Physiol., 254 (Heart Circ. Physiol. 23): H 1179–H 1186.

    Google Scholar 

  • Groebe, K. and G. Thews, 1990, Role of geometry and anisotropic diffusion for modelling Po2 profiles in worldng red muscle, Respir. Physiol., 79: 255–278.

    Google Scholar 

  • Hill, A.V., 1928, The diffusion of oxygen and lactic acid through tissues, Proc. Royal Soc. London (Biol.), 104: 39–96.

    Google Scholar 

  • Hogan, M.C., J. Roca, P.O. Wagner and J.B. West, 1988, Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ, J. Appl. Physiol., 65: 815–821.

    Google Scholar 

  • Hogan, M.C., J. Roca, J.B. West and P.D. Wagner, 1989, Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ, J. Appl. Physiol., 66: 1219–1226.

    Google Scholar 

  • Iversen, P.O. And G. Nicolaysen, 1989a, Heterogeneous blood flow distribution within single skeletal muscles of the rabbit: role of vasomotion, sympathetic nerve activity and effect of vasodilation, Acta Physiol. Scand., 137: 125–133.

    Google Scholar 

  • Iversen, P.O. and G. Nicolaysen (1989b), Is regional blood flow correlated to regional glucose uptake within single rabbit skeletal muscles? Proc.IUPS, 17: 168 (Abstracts; International Congress of Physiological Sciences, Helsinki).

    Google Scholar 

  • Iversen, P.O., M. Standa and G. Nicolaysen, 1989, Marked regional heterogeneity in blood flow within skeletal muscle at rest and during exercise hyperemia in the rabbit, Acta Physiol. Scand., 136: 17–28.

    Google Scholar 

  • Krogh, A., 1919, The number and distribution of capillaries in muscles with calculations of oxygen pressure head necessary for supplying the tissue, J. Physiol. (London), 52: 409–415.

    Google Scholar 

  • Marconi, C., N. Heisler, M. Meyer, H. Weitz, D.R. Pendergast, P. Cerretelli and J. Piiper, 1988, Blood flow distribution and its temporal variability in stimulated dog gastrocnemius muscle, Respir. Physiol, 74: 1.14.

    Google Scholar 

  • Mercker, H., B. Ochwadt and W. Schoedel, 1949, Der Einfluss der Erregungsfrequenz und der Belastung auf Durchblutung und Sauerstoffaufuahme des Muskets, PflĂĽgers Arch., 251: 73–82.

    Google Scholar 

  • Pendergast, D.R., J.A. Krasney, A. Ellis, B. McDonald, C. Marconi and P. Cerretelli, 1985, Cardiac output and muscle blood flow in exercising dogs, Respir. Physiol., 61: 317–326.

    Google Scholar 

  • Piiper, J., 1961, Unequal distribution of pulmonary diffusing capacity and the alveolar-arterial Po2 difference: theory, J. Appl. Physiol., 16: 493–498.

    Google Scholar 

  • Piiper, J., 1985, Mechanisms of functional shunting in mammalian skeletal muscle, in: “Cardiovascular Shunts” (Alfred Benzon Symposium 21), K. Johansen and W.W. Burggren. eds., Munksgaard, Copenhagen, pp. 467–485.

    Google Scholar 

  • Piiper, J., 1988, Role of diffusin shunt in transfer of inert gases and O2 in muscle, in: Oxygen Transport to Tissue X (Adv. Exp. Med. Biol. 222), M. Mochizuki, C.R. Honig, T. Koyama, T.K. Goldstick and D.F. Bruley, eds., Plenum Press, New Yolk and London, pp. 55–61.

    Google Scholar 

  • Piiper, J., 1990, Unequal distribution of blood flow in exercising muscle of the dog, Respir. Physiol. 80: 129–136.

    Google Scholar 

  • Piiper, J. and M. Meyer, 1984, Diffusion-perfusion relationship in skeletal muscle: model and experimental evidence from inert gas washout, in: Oxygen Transport to Tissue V (Adv. Exp. Med. Biol 169), D.W. LĂĽbbers, H. Acker, E. Lehniger-Follert and T.K. Goldstick, eds., Plenum Press, New Yolk and London, pp. 457–466.

    Google Scholar 

  • Piiper, J. and P. Scheid, 1986, Cross-sectional Po2 distributions in Krogh cylinder and solid cylinder models, Respir. Physiol., 64: 241–251.

    Google Scholar 

  • Piiper, J., D.R. Pendergast, C. Marconi, M. Meyer, N. Heisler and P. Cerretelli, 1985, Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J. Appl. Physiol., 64: 241–251.

    Google Scholar 

  • Riley, R.L. and A. Cournand, 1951, Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of the lungs: theory. J. Appl. Physiol., 4: 77–101.

    Google Scholar 

  • Roca, J., M.C. Hogan, D. Story, D.E. Bebout, P. Haab, R. Gonzalez, O. Ueno and P.D. Wagner, 1989, Evidence for tissue diffusion limitation of Vo2max in normal humans. J. Appl. Physiol., 67: 291–299.

    Google Scholar 

  • Stainsby, W.N. and A.B. Otis, 1964, Blood flow, oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am. J. Physiol., 206: 858–866.

    Google Scholar 

  • Stainsby, W.N., B. Snyder and H.G. Welch, 1988, &A pictographic essay on blood and tissue oxygen transport, Med. Sci. Sports Exercise, 20: 213–221.

    Google Scholar 

  • Wagner, P.D., H.A. Saltzman and J.B. West, 1974, Measurement of continuous distributions of ventilation-perfusion ratios: theory, J. Appl. Physiol. 36: 588–599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piiper, J. (1992). Modeling of Oxygen Transport to Skeletal Muscle: Blood Flow Distribution, Shunt, and Diffusion. In: Goldstick, T.K., McCabe, M., Maguire, D.J. (eds) Oxygen Transport to Tissue XIII. Advances in Experimental Medicine and Biology, vol 316. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3404-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3404-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6504-4

  • Online ISBN: 978-1-4615-3404-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics