Skip to main content

Studies on the Pathogenesis of Osteoblastic Metastases by Prostate Cancer

  • Chapter
Prostate Cancer and Bone Metastasis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 324))

Abstract

Malignancies have long been known to markedly alter skeletal and calcium homeostasis. By far the commonest lesion observed in association with most malignancies is skeletal resorption, occasionally accompanied by elevations in blood calcium (hypercalcemia). Osteolysis and hypercalcemia may occur either when the tumor has metastasized to bone, presumably by a paracrine mechanism, or in the absence of skeletal metastases, by an endocrine mechanism. Considerable effort has been expended over the years to attempt to discern the pathogenetic factors involved in these skeletal responses to cancer. This culminated in the isolation of a parathyroid hormone-like peptide (PLP) from cancers, such as renal cancer, which are commonly associated with osteolysis and hypercalcemia [1]. This material is now believed to be the major factor causing hypercalcemia of malignancy. In the human, 3 isoforms of this peptide may exist and this entity is believed now to be a member of aparathyroid hormone/PLP gene family. Currently it is less clear what pathogenetic moieties may act locally in the vicinity of a skeletal metastasis to cause osteolysis. Although prostaglandins of the E series and transforming growth factor alpha (TGFα) have been implicated in this regard, more evidence supports the role of peptide cytokines such as, interleukin-1 and tumor necrosis factor alpha (TNFα) in the local resorption induced by cancer metastases [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goltzman D., Hendy G.N. and Banville D., Parathyroid hormone-like peptide: molecular characterization and biological properties, Trends in Endo. Metab. 1:39–43 (1989).

    Article  CAS  Google Scholar 

  2. Mundy G.N., Hypercalcemia of malignancy revisited, J. Clin. Invest. 82:1–5 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. Franks L.M., Etiology, epidemiology and pathology of prostatic cancer, Cancer 32:1092–1095 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. Falasko C.S.B., Mechanism of bone destruction in the development of skeletal metastases, Nature 263:507–509 (1976).

    Article  Google Scholar 

  5. Lyles K.W., Berry W.R., Haussler M., Harrelson J.M. and Drezner M.K., Hypophosphatemic osteomalacia: association with prostatic carcinoma, Ann. Intern. Med. 93:275–278 (1980).

    PubMed  CAS  Google Scholar 

  6. Jacobs S.C., Pikna D. and Lawson R.K., Prostatic osteoblastic factor, Investi. Urol. 17:195–198 (1979).

    CAS  Google Scholar 

  7. Jacobs S.C., Lawson R.K., Mitogenic factor in human prostate extracts, Urology 16:448–491 (1980).

    Article  Google Scholar 

  8. Simpson E., Harrod J., Eilon G., Jacobs J.W. and Mundy G.R., Identification of a messenger ribonucleic acid fraction in human prostatic cancer cells coding for a novel osteoblast-stimulating factor, Endocrinology 117:1615–1620 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Koutsilieris M., Rabbani S.A. and Goltzman D., Selective osteoblast mitogens can be extracted from prostatic tissue, The Prostate 9:109–115 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. Canalis E., The hormonal and local regulation of bone formation, Endocr. Reviews 4:62–77 (1983).

    Article  CAS  Google Scholar 

  11. James R., Polypeptide growth factors, Ann. Rev. Biochem. 53:259–292 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. Koutsilieris M., Rabbani S.A. and Goltzman D., Effects of human prostatic mitogens on rat bone cells and fibroblasts, J. Endocr. 115:447–454 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. Koutsilieris M., Rabbani S.A., Bennett H.P.J. and Goltzman D., Characteristics of prostate-derived growth factors for cells of the osteoblast phenotype, J. Clin. Invest. 80:941–946 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F. and Jones L.W., Establishment and characterization of a human prostatic carcinoma cell line (PC-3), Invest. Urol. 17:16–23 (1989).

    Google Scholar 

  15. Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A., and Murphy G.P., LNCap model of human prostatic carcinoma, Cancer Res. 43:1809–1818 (1983).

    PubMed  CAS  Google Scholar 

  16. Rabbani S.A., Desjardins J. and Goltzman D., A human prostatic cancer cell line releases mitogenic activity selective for cells of the osteoblast phenotype, in: “Proceedings of the American Association of Cancer Research,” A955, pp 241 (1988).

    Google Scholar 

  17. Rabbani S.A., Desjardins J., Bell A.W., Banville D. and Goltzman D., An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast-like cells, Submitted.

    Google Scholar 

  18. Gunzler WA., Steffens G.J., Otting F., Kim S.M.A., Frankus E. and Flohe L., The primary structure of high molecular urokinase from human urine, Hoppe Seyler’s Z. Physiol. Chem. 363:1155–1165 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. Wun T.-C., Ossowski L. and Reich E., A proenzyme form of human urokinase, J. Biol. Chem. 257:7262–7268 (1982).

    PubMed  CAS  Google Scholar 

  20. Appella E., Robinson E.A., Ullrich S.J., Stopelli M.P., Corti A., Cassani G. and Blasi F., The receptor-binding sequence of urokinase: a biological function for the growth factor module of proteases, J. Biol. Chem. 262:4437–4440 (1987).

    PubMed  CAS  Google Scholar 

  21. Stoppelli M.P., Corti A., Soffientini A., Cassani G., Blasi F. and Assoian R.K., Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes, Proc. Natl. Acad. Sci. USA 82:4939–4943 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. Blasi F., Vassalli J.-D. and Dano K., Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors, J. Cell Biol. 104:801–804 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. Roldan A.L., Cubellis M.V., Masucci M.T., Behrendt N., Lund L.R., Dano K., Appella E. and Blasi F., Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis, EMBO J. L467–474 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goltzman, D., Bolivar, I., Rabbani, S.A. (1992). Studies on the Pathogenesis of Osteoblastic Metastases by Prostate Cancer. In: Karr, J.P., Yamanaka, H. (eds) Prostate Cancer and Bone Metastasis. Advances in Experimental Medicine and Biology, vol 324. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3398-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3398-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6501-3

  • Online ISBN: 978-1-4615-3398-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics