On the Regulation of β2 Integrins

  • M. Amin Arnaout
  • Masahiro Michishita
  • Chander P. Sharma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 323)


β2 integrins (Leu-CAMs, CD11/CD18) are three heterodimeric surface membrane glycoprotein receptors which mediate a large number of divalentcation- dependent cell-cell and cell-matrix adhesion functions in leukocytes.1 Each heterodimer (Figure 1) consists of a distinct ex subunit (CD11a, CD11b or CD11c) noncovalently associated with a single β subunit (CD18). CD11a/CD18 is expressed on all leukocytes. CD11b and CD11c expression is restricted to myelomonocytic cells and NK cells.


Phorbol Ester Cytoplasmic Tail Leukocyte Adhesion Molecule Fibronectin Receptor Amino Acid Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Arnaout, Structure and function of the leukocyte adhesion molecules CD11/CD18, Blood 75:1037 (1990).Google Scholar
  2. 2.
    N. Kieffer and D.R Phillips, Platelet membrane glycoproteins: Functions in cellular interactions, Ann. Rev. Cell Biol. 6:329 (1990).Google Scholar
  3. 3.
    M.V. Nermut, N.M. Green, P. Eason, S.S. Yamada and K.M. Yamada, Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7:4093 (1988).Google Scholar
  4. 4.
    J.J. Calvete, A. Henschen and J. Gonzalez-Rodriguez, Assignment of disulphide bonds in human platelet GPIIIa: A disulphide pattern for the β-subunits of the integrin family, Biochem. J. 274:63 (1991).Google Scholar
  5. 5.
    C.E. Nelson, H. Rabb and M.A. Arnaout, Genetic cause of leukocyte adhesion molecule deficiency: Abnormal splicing and a missense mutation in a conserved region of CD18 impair surface expression of β2 integrins. J. Biol. Chem. In press (1992).Google Scholar
  6. 6.
    R.O. Hynes, Integrins: a family of cell surface receptors, Cell 48:549 (1987).Google Scholar
  7. 7.
    M.A. Arnaout, Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response, Immunol. Rev. 114:145 (1990).Google Scholar
  8. 8.
    M.A. Arnaout, H. Spits, C. Terhorst, J. Pitt and R.F. Todd III, Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mo1 deficiency: Effects of cell activation on Mo1/LFA-1 surface expression in normal and deficient leukocytes, J. Clin. Invest. 74:1291 (1984).Google Scholar
  9. 9.
    L.M. Stoolman, Adhesion molecules controlling lymphocyte migration, Cell 56:907 (1989).Google Scholar
  10. 10.
    R.F. Todd III, M.A. Arnaout, R.E. Rosin, C.A Crowley, W.A. Peters, J.T. Curnuttee, et al., Subcellular localization of the a subunit of Mo1 (Mo1 alpha; formerly gp110), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74:1280 (1984).Google Scholar
  11. 11.
    P.J. Sims, M.H. Ginsberg, E.F. Plow and S.J. Shattil, Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex, J. Biol. Chem. 266:7345 (1991).Google Scholar
  12. 12.
    D.C. Altieri, Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion, J. Immunol. 147:1891 (1991).Google Scholar
  13. 13.
    A. Hermanowski-Vosatka, J.A.G. Van Strip, W.J. Swiggard and S.D. Wright, Integrin modulation factor-1: A lipid that alters the function of leukocyte integrins, Cell 68:341 (1992).Google Scholar
  14. 14.
    I. Dransfield, C. Cabanas, A. Craig and N. Hogg, Divalent cation regulation of the function of the leukocyte integrin LFA-1, J. Cell Biol. 116:219 (1992).Google Scholar
  15. 15.
    Y. van Kooyk, P. Weder, F. Hogervorst, A.J. Verhoeven, G. van Seventer, A.A. te Velde, et al., Activation of LFA-1 through a Ca2+dependent epitope stimulates lymphocyte adhesion, J. Cell Biol. 112:345 (1991).Google Scholar
  16. 16.
    D.C. Altieri, R. Bader, P.M. Mannucci and T.S. Edgington, Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an inducible recognition specificity for fibrinogen, J. Cell Biol. 107:1893 (1988).Google Scholar
  17. 17.
    J.W. Tamkun, D.W. DeSimone, D. Fonda, R.S. Pateb, C. Buck, A.R. Horwitz, et al., Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin, Cell 46:271 (1986).Google Scholar
  18. 18.
    T. Chatila, R.S. Geha and M.A. Arnaout, Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules, J. Cell Biol. 109:3435 (1989).Google Scholar
  19. 19.
    Y. Hayashi, B. Haimovich, A. Reszka, O. Boettiger and A. Horwitz, Expression and function of chicken integrin β1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells, J. Cell Biol. 110:175 (1990).Google Scholar
  20. 20.
    M.L. Hibbs, S. Jakes, S.A. Stacker, R.W. Wallace and T.A. Springer, The cytoplasmic domain of the integrin lymphocyte-function-associated antigen 1 β subunit: Sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site, J. Exp. Med. 174:1227 (1991).Google Scholar
  21. 21.
    T.E. O’Toole, O. Mandelman, J. Forsyth, S.J. Shattil, E.F. Plow and M.H. Ginsberg, Modulation of the affinity of integrin ∝llbβ3 (GPIIb-IIIa) by the cytoplasmic domain of ∝IIb, Science 254:845 (1991).Google Scholar
  22. 22.
    Y. van Kooyk, P. van de Wiel-van Kemenade, P. Weder, T.W. Kuijpers and C.G. Figdor, Enhancement of LFA-1 mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes, Nature 342:811 (1989).Google Scholar
  23. 23.
    J.P. Buyon, S.G. Slade, J. Reibman, S.B. Abramson, M.R. Philips, G. Weismann, et al., Constitutive and induced phosphorylation of the ∝ and β-chains of the CD11/CD18 leukocyte integrin family: relationship to adhesion-dependent functions, J. Immunol. 144:191 (1990).Google Scholar
  24. 24.
    H. Rabb, C.P. Sharma, M. Michishita, O. Brown and M.A. Arnaout, Regulation of CD11b/CD18 function and endocytosis by the cytoplasmic tail of its β subunit, submitted. (1992).Google Scholar
  25. 25.
    J. Solowska, J.-L. Guan, E.E. Marcantonio, J.E. Trevithick, C.A. Buck and R.D. Hynes, Expression of normal and mutant avian integrin subunits in rodent cells, J. Cell Biol.. 109:853 (1989).Google Scholar
  26. 26.
    N. Dana, O.F. Fathallah and M.A. Arnaout, Expression of a soluble and functional form of the human β2 integrin CD11b/CD18, Proc. Natl. Acad. Sci. (USA). 88:3106 (1991).Google Scholar
  27. 27.
    W.-J. Chen, J.L. Goldstein and M.S. Brown, NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor, J. Biol. Chem. 265:3116 (1990).Google Scholar
  28. 28.
    J.F. Collawn, M. Stangel, L.A. Kuhn, V. Esekogwu, S. Jing, I.S. Trowbridge, J.A. Tainer., Transferrin receptor internalization sequence YXRF implicates a tight turn as a structural recognition motif for endocytosis, Cell 63:1061 (1990).Google Scholar
  29. 29.
    M.S. Bretscher, Endocytosis and recycling of the fibronectin receptor in CHO cells, EMBO J. 8:1341 (1989).Google Scholar
  30. 30.
    T.J. Raub, S.L. and Kuentzel, Kinetic and morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibronectin receptor β subunit monoclonal antibody, Exp. Cell Res. 184:407 (1989).Google Scholar
  31. 31.
    M.M. Sczekan and R.L. Juliano, Internalization of the fibronectin receptor is a constitutive process, J. Cell Physiol. 142:574 (1990).Google Scholar
  32. 32.
    M.M. Schwartz, C. Lechene and D.E. Ingbar, Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin ∝5β1, independent of cell shape, Proc. Natl. Acad. Sci. (USA). 88:7849 (1991).Google Scholar
  33. 33.
    C.A. Otey, F.M. Pavalko and K. Burridge, An interaction between ∝-actinin and the βI integrin subunit in vitro, J. Cell Biol. 111:721 (1990).Google Scholar
  34. 34.
    A. Kupfer and S.J. Singer, Molecular dynamics in the membranes of helper T cells, Proc. Natl. Acad. Sci. (USA). 85:8216 (1988).Google Scholar
  35. 35.
    C.P. Sharma, S. Magil and M.A. Arnaout, Microdomains in the cytoplasmic tail of CD18 involved in binding to cytoskeleton, Clin Res.. In press (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • M. Amin Arnaout
    • 1
  • Masahiro Michishita
    • 1
  • Chander P. Sharma
    • 1
  1. 1.Leukocyte Biology and Inflammation Program Renal Unit and Department of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations