Advertisement

Analyses of VLA-4 Structure and Function

  • Paul D. Kassner
  • Joaquin Teixido
  • Bosco M. C. Chan
  • Christina M. Parker
  • Martin E. Hemler
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 323)

Abstract

The integrin VLA-4 mediates the adhesion of lymphocytes, monocytes, eosinophils and some melanoma cells to VCAM-1 on the surface of activated endothelial cells.1-7 Because the VLA- 4/VCAM-1 pathway plays a prominent role in the migration and localization of these various cell types, it is a potential target of therapeutic intervention that has relevance to inflammation, atherosclerosis,8 allergy and asthma,9,10 and possibly also tumor cell metastasis11 and arthritis.12

Keywords

K562 Cell Cytoplasmic Domain Cytoplasmic Tail Primary Amino Acid Sequence Human Umbilical Vascular Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Osborn, C. Hession, R. Tizard, C. Vasallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb, Direct cloning of vascular cell adhesion molecule 1 (VCAM1), a cytokine-induced endothelial protein that binds to lymphocytes, Cell 59:1203 (1989).Google Scholar
  2. 2.
    G.E. Rice, J.M. Munro, and M.P. Bevilacqua, Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes: A CD11/CDI8-independent adhesion mechanism, J. Exp. Med. 171:1369 (1990).Google Scholar
  3. 3.
    M.J. Elices, L. Osborn, Y. Takada, C. Crouse, S. Luhowskyj, M.E. Hemler, and R.R. Lobb, VCAM-Ion activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site, Cell 60:577 (1990).Google Scholar
  4. 4.
    B.R. Schwartz, E.A. Wayner, T.M. Carlos, H.D. Ochs, and J.M. Harlan, Identification of surface proteins mediating adherence of CD11/CD18-deficient lymphoblastoid cells to cultured human endothelium, J. Clin. Invest. 85:2019 (1990).Google Scholar
  5. 5.
    M.E. Hemler, M.J. Elices, C. Parker, and Y. Takada, Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions, Immunol. Rev. 114:45 (1990).Google Scholar
  6. 6.
    P. Allavena, C. Paganin, I. Martin-Padura, G. Peri, M. Gaboli, E. Dejana, P.C. Marchisio, and A. Mantovani, Molecules and structures involved in the adhesion of natural killer cells to vascular endothelium, J. Exp. Med. 173:439 (1991).Google Scholar
  7. 7.
    T.B. Issekutz and A. Wyrkretowicz, Effect of a new monoclonal antibody, TA-2, that inhibits lymphocyte adherence to cytokine stimulated endothelium in the rat, J. Immunol. 147:109 (1991).Google Scholar
  8. 8.
    A. Laffón, R. Garcia-Vincuña, A. Humbria, A.A. Postigo, A.L. Corbi, M.D. De Landazuri, and F. sánchez-Madrid, Upregulated expression and function of VLA-4 fibronectin receptors on human activated T cells in rheumatoid arthritis, J. Clin. Invest. 88:546 (1991).Google Scholar
  9. 9.
    G.M. Walsh, J.-J. Mermod, A. Hartnell, A.B. Kay, and A.J. Wardlaw, Human eosinophil, but not neutrophil, adherence to IL-I-stimulated human umbilical vascular endothelial cells is ∝4β1 (very late antigen-4) dependent, J. Immunol. 146:3419 (1991).Google Scholar
  10. 10.
    B.S. Bochner, F.W. Luscinskas, M.A. Gimbrone, W. Newman, S.A. Sterbinsky, C.P. DerseAnthony, D. Klunk, and R.P. Schleimer, Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules, J. Exp. Med. 173:1553 (1991).Google Scholar
  11. 11.
    G.E. Rice and M.P. Bevilacqua, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion, Science 246:1303 (1989).Google Scholar
  12. 12.
    M.I. Cybulsky and M.A. Gimbrone, Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis, Science 251:788 (1991).Google Scholar
  13. 13.
    E.A. Wayner, A. Garcia-Pardo, M.J. Humphries, J.A. McDonald, and W.G. Carter, Identification and characterization of the lymphocyte adhesion receptor for an alternative cell attachment domain in plasma fibronectin, J. Cell Biol. 109:1321 (1989).Google Scholar
  14. 14.
    J.-L. Guan and R.O. Hynes, Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor ∝4,β1, Cell 60:53 (1990).Google Scholar
  15. 15.
    A. Garcia-Pardo, E.A. Wayner, W.G. Carter, and D.C. Ferreira, Human B lymphocytes define an alternative mechanism of adhesion to fibronectin: The interaction of the ∝4,β1 integrin with the LHGPEILDVPST sequence of the type III connecting segment is sufficient to promote cell attachment, J. Immunol. 144:3361 (1990).Google Scholar
  16. 16.
    T.A. Ferguson, H. Mizutani, and T.S. Kupper, The integrin-binding pep tides GRGDSP and GPEILDVPSTabrogate T cell mediated immune responses in vivo, Proc. Natl. Acad. Sci. USA (1991).Google Scholar
  17. 17.
    L.S. Davis, N. Oppenheimer-Marks, J.L. Bednarczyk, B.W. McIntyre, and P.E. Lipsky, Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules, J. Immunol. 145:785 (1990).Google Scholar
  18. 18.
    Y. Nojima, M.J. Humphries, A.P. Mould, A. Komoriya, K.M. Yamada, S.F. Schlossman, and C. Morimoto, VLA-4 mediates CD3-dependent CD4+ T cell activation via the CSI alternatively spliced domain of fibronectin, J. Exp. Med. 172:1185 (1990).Google Scholar
  19. 19.
    Y. Shimizu, G.A. Van Seventer, K.J. Horgan, and S. Shaw, Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin, J. Immunol. 145:59 (1990).Google Scholar
  20. 20.
    D.A. Williams, M. Rios, C. Stephens, and V.P. Patel, Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions, Nature 352:438 (1991).Google Scholar
  21. 21.
    S. Dufour, J.-L. Duband, M.J. Humphries, M. Obara, K.M. Yamada, and J.P. Thiery, Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules, EMBO J. 7:2661 (1988).Google Scholar
  22. 22.
    J.L. Bednarczyk and B.W. McIntyre, A monoclonal antibody to VLA-4 a chain (CDw49) induces homotypic lymphocyte aggregation, J. Immunol. 144:777 (1990).Google Scholar
  23. 23.
    M.R. Campanero, R. Pulido, M.A. Ursa, M. Rodriquez-Moya, M.D. De Landazuri, and F. Sánchez-Madrid, An alternative leukocyte homotypic adhesion mechanism, LFA-I/ICAM-I independent, triggered through the human VLA-4 integrin, J. Cell. Biol. 110:2157 (1990).Google Scholar
  24. 24.
    R. Pulido, M.J. Elices, M.R. Campanero, L. Osborn, S. Schiffer, A. GarCia-Pardo, R. Lobb, M.E. Hemler, and F. Sánchez-Madrid, Functional evidence for three distinct and independently inhibitable adhesion activities mediated by the human integrin VLA-4: Correlation with distinct ∝4 epitopes, J. Biol. Chem. 266:10241 (1991).Google Scholar
  25. 25.
    F. Sánchez-Madrid, M.D. De Landazuri, G. Morago, M. Cebrian, A. Acevedo, and C. Bernabeu, VLA-3: a novel polypeptide association within the VLA molecular complex: cell distribution and biochemical characterization, Eur. J. Immunol. 16:1343 (1986).Google Scholar
  26. 26.
    B.W. McIntyre, E.L. Evans, and J.L. Bednarczyk, Lymphocyte surface antigen L25 is a member of the integrin receptor superfamily, J. Biol. Chem. 264:13745 (1989).Google Scholar
  27. 27.
    J.L. Bednarczyk, J.N. Wygant, and B.W. McIntyre, Structural and functional analysis of the integrin VLA-4, J. Cell. Biochem. 14A:184 (1990).Google Scholar
  28. 28.
    Y. Takada, M.J. Elices, C. Crouse, and M.E. Hemler, The primary structure of the ∝4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function, EMBO J. 8:1361 (1989).Google Scholar
  29. 29.
    M.E. Hemler, Structures and functions of VLA proteins and related integrins, in: “Receptors for extracellular matrix proteins (A volume of Biology of Extracellular Matrix)”, R.P. Mecham et al., eds., Academic Press, Inc., San Diego, CA, pp. 255–299 (1991).Google Scholar
  30. 30.
    H. Neuhaus, M.C.-T. Hu, M.E. Hemler, Y. Takada, B. Holzmann, and I.L. Weissman, Cloning and expression of cDNAs for the a subunit of the murine lymphocyte-peyer’s patch homing receptor, J. Cell Biol. 115:1149 (1991).Google Scholar
  31. 31.
    R.N. Tamura, C. Rozzo, L. Starr, J. Chambers, L.F. Reichardt, H.M. Cooper, and V. Quaranta, Epiththelial integrin ∝6β4: complete primary structure of ∝6 and variant forms of β4, J. Cell Biol. 111:1593 (1990).Google Scholar
  32. 32.
    J. Teixidó, C.M. Parker, P.O. Kassner, and M.E. Hemler, Functional and structural analysis of VLA-4 integrin ∝4 subunit cleavage, J. Biol. Chem. 267:1786 (1992).Google Scholar
  33. 33.
    B.M.C. Chan, P.O. Kassner, J.A. Schiro, H.R. Byers, T.S. Kupper, and M.E. Hemler, Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains, Cell 68:1051 (1992).Google Scholar
  34. 34.
    P.J. Barr, Mammalian subtilisins: the long-sought dibasic processing endoproteases, Cell 66:1 (1991).Google Scholar
  35. 35.
    B.M.C. Chan, M.J. Elices, E. Murphy, and M.E. Hemler, Adhesion to VCAM-1 and fibronectin: comparison of ∝4β1 (VLA-4) and ∝4β7 on the human cell line JY, J. Bioi. Chem. (in press, 1992).Google Scholar
  36. 36.
    M.R. Campanero, A.G. Arroyo, R. Pulido, A. Ursa, M.S. de Matias, P. Sánchez-Mateos, P.O. Kassner, B.M.C. Chan, M.E. Hemler, A. Corbi, M.O. De Landazuri, and F. Sánchez-Madrid, Triggering of integrin-mediated intercellular adhesion through the common β1 subunit of VLA heterodimers: Evidence for a role of ∝2β1 and ∝4/β1 in cell-cell interactions, (submitted, 1992).Google Scholar
  37. 37.
    M.J. Elices and M.E. Hemler, The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others, Proc. Natl. Acad. Sci. USA 86:9906 (1989).Google Scholar
  38. 38.
    B.M.C. Chan, N. Matsuura, Y. Takada, B.R. Zetter, and M.E. Hemler, In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells, Science 251:1600 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Paul D. Kassner
    • 1
  • Joaquin Teixido
    • 1
  • Bosco M. C. Chan
    • 1
  • Christina M. Parker
    • 2
  • Martin E. Hemler
    • 1
  1. 1.Division of Tumor VirologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  2. 2.Division of Immunochemistry, Department of Rheumatology and ImmunologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA

Personalised recommendations